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Executive Summary 
The core mission of Columbia University is to create, curate, and disseminate knowledge. 
For the nearly three centuries that Columbia University has existed, knowledge has been derived 

from the intellectual pursuits of human scholars working alone and in teams. However, in the past 

decade, and accelerating in the past few years, a new epistemological paradigm has emerged: 

Scholars, artists, scientists and engineers can magnify and amplify their ability to create and 

discover new knowledge by collaborating with new forms of Artificial Intelligence (AI). We use the 

term AI loosely to encompass all forms of current and future high-performance computing tools 

that assist, augment and accelerate knowledge discovery and generation. 

Scholars debate to what degree AI will affect different fields and how soon, how academic roles 

will change, and in what ways the technology will parallel or differ from human ingenuity, limits 

and constraints. However, one trend is clear: Just as automation technology has changed industry 

in the past, automation is now poised to revolutionize academic pursuits. And just as not every 

manufacturer survived automation, not every academic institution will survive and thrive in the 

impending AI transformation. AI technology is not merely hype, nor has its full potential revealed 

itself yet. We are only at the beginning.  

With this opportunity also comes great responsibility. We would argue that Columbia University 

is particularly well poised to play a key role in this transformation, specifically because it can bring 

to bear many pillars of disciplinary excellence.  Columbia University must fully embrace and 

engage with AI across all of its fields, disciplines, and pursuits, not only to stay competitive and 

thrive, but critically to lead the nation and the world in the responsible alignment and application 

of these new technologies towards society and human values.  

Artificial intelligence offers opportunities to alleviate or solve grand challenges in climate, 
energy, food, water, health, shelter, privacy and security, to name a few. But this technology 

can also be used ineffectively or worse, nefariously; opportunities will be lost and harm will be 

done. Academic researchers have the ethical responsibility to engage and lead the beneficial 

development of this technology for society, and to balance competing commercial and 

governmental forces. Few institutions compare to Columbia in its ability to holistically scrutinize 

the potential and peril of AI and recommend fruitful paths forward.   
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To fulfill our responsibility and serve effectively, academic scholars and researchers must possess 

both independent access to the technology itself, as well as the necessary skills to use it 
and direct its trajectory. This report outlines what Columbia University needs to achieve both 

these goals. 

The Opportunity: 

● High Performance Computing and AI (HPC+AI) are profoundly altering the opportunities 

and risks of all research universities. Unlike the past, when HPC was the domain primarily 

of science and engineering,  HPC+AI will cut broadly across all disciplines of scholarship 

and discovery including arts, humanities, law, policy, journalism and more.  HPC+AI will 

transform research, scholarship, and teaching. A significant, early investment in this 

emerging area will make Columbia exceptional. Columbia’s broad and deep faculty 

knowledge, research portfolio, and data have long been a great strength.  When paired 

with significant HPC+AI,  tremendous opportunities for discovery and societal impact 

should emerge. 

● Columbia needs extraordinary HPC to attract outstanding faculty as well as retain existing 

faculty.  

● Our peers recognize the opportunity and threat investing significantly in staff, capital 

expenditures and licensing deals with HPC+AI vendors.  While the exact spending on 

HPC/AI infrastructure and support vs. total investments makes direct comparisons of 

these numbers difficult, there are large investments in this space (e.g. MIT $1B, USC $1B, 

UPenn $750M) 1–7 that will empower these peer universities to recruit and retain talent. 

Faculty and students alike will gravitate to these investments and opportunities.  

The Recommendation:  

● Recommendation  1: Create the “Discovery Accelerator'' facility that will enable and 

encourage all CU researchers to take advantage of HPC+AI, subsidizing usage at low or 

no direct cost, particularly at the beginning. This includes compute and data infrastructure, 

as well as operational support. Critically, this is not a “one-and-done” investment but needs 

to be structured and budgeted for continual upgrades. 

● Recommendation 2: Facilitate educational and technical services that will catalyze 

development, understanding, exploration, and adoption of HPC+AI opportunities across 

https://www.zotero.org/google-docs/?uhf7Or
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the University, allowing Columbia to broadly and rapidly advance—including in disciplines 

that currently lack in-house expertise.  

The university must undertake both prongs of this strategy rapidly to catalyze a virtuous cycle 

whereby our researchers demonstrate leadership which in turn attracts talent, research awards, 

and reputation.  Conversely, playing catch-up will cost more and deliver significantly less.  This is 

truly a situation in which “those who hesitate are lost.”   

The Implementation: 

● In the next decade, investing approximately $25M per year on computational 
infrastructure and $5M per year on training (~$300M total over a decade) to realize 

this vision. Such an investment strongly aligns with university strategic priorities of 

academic and operational excellence in areas including climate, artificial intelligence, 

mental health, and probably any and all future initiatives8. We believe that this investment 

will return increased research productivity, talent recruitment and retention, increased 

proposal competitiveness, and strategic fundraising campaigns for impact-driven donors. 

If we assume roughly ~$1B in research expenditures a year, this investment represents a 

small fraction of our total sponsored projects spending and will create competitive 

advantage for awards.  Additional cost savings opportunities exist through mindful 

consideration of local power consumption or space (e.g., Local Law 97)9,10. This 

investment roughly divides between infrastructure ($250M) and training ($50M). 

● A center or similar structure, led by established researchers in the field, should oversee 

the facility and staffing, engage with campus faculty and leadership, and coordinate with 

OAD for fundraising to support the facility.  A faculty-led steering committee, similar in 

design to the current SRCPAC, will work with leadership and CUIT to direct purchasing 

and allocations to balance needs and access.  

  

https://president.columbia.edu/news/new-social-contract-sharing-our-strategic-priorities
https://www.zotero.org/google-docs/?70E2Rc
https://www.zotero.org/google-docs/?UUakhF
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Introduction 
In April 2023, Vice President and CIO Gaspare LoDuca and Executive Vice President for 

Research Jeannette Wing commissioned a task force of faculty from all schools and colleges of 

Columbia University to submit a report outlining proposed strategies for the university to address 

its growing reliance on research computing.    

The charge, provided in the appendix of this report, is “to recommend a strategic plan for the 

University’s future computational and data infrastructure for research.” The committee considered 

all the major elements of this plan, including but not limited to: 

● Computing resources 

● Data resources for analysis, sharing, storage, archiving, privacy and security 

● Technology skills required 

● Policy impacts 

● High level cost implications 

Even a year or two ago, it would have been difficult to predict that we would now have machines 

capable of holding deep conversations in natural language, creating novel artwork, writing prose 

and poems, composing music, discovering new materials, controlling robots, crafting new 

proteins, and diagnosing disease.  The pace of progress and change is startling. Just as the AI 

models this year far exceed the capabilities of last year, the AI next year will exceed the capacity 

and potential of today’s AI.  

Therefore, this report seeks not to simply describe current research computing needs, nor to detail 

the necessary existing infrastructure maintenance, upgrades, and services to bring fast 

networking, adequate wifi, and powerful laptops to every researcher. Instead we aim more 

ambitiously to:  

1. Anticipate future computing needs of all scholarly fields, allowing scholars to flourish in an 

era where scholarly pursuit will likely be enabled (if not driven) by Generative AI, big data, 

and computational discovery and creation. 

2. Encourage Columbia researchers to leverage and engage computational resources to 

remain leaders in their chosen fields in the face of accelerating HPC and AI-driven 

progress (and competition). 
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The urgency of an institutional strategy to adapt to the fast pace of AI and HPC is summarized by 

Liu and Jagadish in their recent Harvard Data Science Review11 as follows: 

“The scale and speed of the Generative AI revolution, while offering unprecedented 

opportunities to advance science, is also challenging the traditional academic research 

model in fundamental ways. The academic research model and academic institutions are not 

set up to be nimble in the face of rapidly advancing technologies, and the task of adopting 

such new technologies usually falls on individual researchers. Excitement about the 

opportunities that Generative AI brings is leading to a rush of researchers with various levels 

of technical expertise and access to resources to adopt this new technology, which could 

lead to many researchers “reinventing the wheel” and research outcomes lacking in ethics, 

rigor and reproducibility. This problem not only applies to Generative AI, but could also be 

true for other upcoming and similarly disruptive technologies. We argue that the current norm 

of relying on individual researchers for new technology adoption is no longer adequate. It is 

time that academic institutions and their research organizations [...] develop new 

mechanisms to help researchers adopt new technologies, especially those that cause major 

seismic shifts such as Generative AI. We believe this is essential for helping academic 

researchers stay at the forefront of research and discovery, while preserving the validity and 

trustworthiness of science.” 

Though this committee’s mandate specifically excluded studying the use of computing for 

education, teaching, and administration, in fact, borders can –and should – be porous.  Using 

computing to further research (including the field of research computing itself) and teaching 

students how to use computing to advance their understanding and/or to do research, inevitably 

interact and overlap.  For example, many undergraduate and graduate students participate in 

advanced research as part of their overall education and experience at the University, and the 

curriculum and course work should provide a strong foundation in the principles and practice such 

that our students can become leaders in their respective domains. Training students in AI/HPC-

enabled research will require ready access to advanced computing resources, as well as sufficient 

and appropriate training to use these tools effectively.   

Beyond direct research and coursework, teaching students to use and interact with advanced AI 

and simulation tools, as well as interpret and evaluate their output has value and impact for myriad 

future careers beyond the classroom, and we would argue, for society as a whole.  We want - and 

https://www.zotero.org/google-docs/?A1DpeX
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will need - our lawyers, journalists, entrepreneurs, business executives and social workers to have 

a well-grounded understanding of and appreciation for the power and dangers of generative AI.  

From Mainframes to Datacenters to Generative AI 
In order to understand why Research Computing now requires different thinking and why we 

cannot simply expand existing systems incrementally, it helps to understand the evolution of 
computing over the past few decades in the context of academic research. 

Shared-use Mainframes dominated research computing in the 1970’s  and 1980’s. Access to 

mainframe computers enabled the new internet, as well as large-scale computational simulations 

in the physical sciences, engineering analyses such as structural finite elements, computer aided 

design models for architecture, expert systems for medical diagnostics, and statistical data 

analysis  –- a precursor of today’s machine learning algorithms. However, these uses were mainly 

limited to experts in science and engineering fields.  

As computer technology advanced in the 1990’s and 2000’s, personal computers became 

increasingly powerful and commoditized. Many researchers now had ready access to desktop 

workstations. The next phase of shared infrastructure shifted to large scale data storage and 

processing that could not be done locally. New Data centers offered centralized and secure 

handling of large amounts of data, which were too cumbersome, sensitive, or inefficient to be 

handled on personal computers. Data centers consisted mostly of single-core or few-core 

computers connected in clusters, running CPU-dominated database applications, large scale 

simulations, and statistical analyses. Applications like AI-driven heuristic search for supply-chain 

optimization or climate simulations required thousands of computers running in tandem, with 

access to common databases. However, this phase too, was mostly exploited by science, 

engineering, and medicine. 

The 2010’s introduced a new twist to shared computing in the form of machine learning using 

thousands of parallel cores (known as GPUs). Until 2012, not even the largest data center with 

the most sophisticated machine learning algorithms could reliably perform what we now consider 

relatively straightforward tasks, such as automatically telling the difference between a photo of a 

cat and a dog. The introduction of deep learning, a new architecture of machine learning based 

on neural networks that underlies most forms of AI today, removed that barrier.  
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Since 2012, the world has learned how to build scalable AI – These are AI systems that can 
keep growing in size and improving in their capacity to learn every generation. While we 

can anticipate further significant innovation and improvements in the algorithms, models, and 

even architectures, a fundamental and critical bottleneck has now become access to compute 

hardware and data12: The AI race began.  

In 2017, yet another AI architecture emerged in the form of Transformers – a new Deep Learning 

architecture that unlocked generative and creative tasks (aka. Generative AI). Machines could be 

taught (trained) to generate new content that is loosely inspired by past content. Since 2017, 

generative AI systems have continued to grow at an astonishing rate and have made their way 

into nearly every field. In the past few years alone, AI has emerged with capabilities in some 

domains that appear to rival human abilities in both analysis and synthesis. Newer architectures 

that outperform transformer architectures are already on the horizon as we write this report. 

Given these new AI abilities, the third wave of research computing that is sweeping across almost 

all disciplines today  focuses on accelerated idea generation, not just analysis. Unlike the 

previous generations of computing, generative AI appears to be accelerating discovery and 

ideation also in non-technical fields.  

New generative AI tools will change the way that medical diagnostics is performed13–15, accelerate 

the ability of journalists to parse news in real time16, enable legal scholars to interrogate and query 

unimaginably large corpuses of text17–22, planners and policy makers to probe vast amounts of 

urban data, architects to optimize the performative qualities of large building complexes and 

artists to generate visual art and musicians to compose music23–26, just to name a few fields 

experiencing dramatic transformation.  

Materials scientists are deploying generative AI to help discover new materials at a rate that is 

orders of magnitude faster than what these experts could discover manually just a few years 

ago27–29. Researchers are predicting previously unknown protein structures predicted with high 

accuracy30–34, and deploying AI to design novel proteins and molecules with specific functions. 

Researchers also deploy these tools to denoise, restore, and augment images and signals, 

enabling new observations.  Companies and teachers are exploring new forms of personalized 

education now that machines can communicate fluently in natural language and across multiple 

human languages and dialects. There is also considerable focus on detecting, identifying, and 

classifying emotion from speech and video35–40.  These trends will continue to accelerate as 

https://www.zotero.org/google-docs/?l1LRo5
https://www.zotero.org/google-docs/?JjCV4k
https://www.zotero.org/google-docs/?JjCV4k
https://www.zotero.org/google-docs/?bGVFU3
https://www.zotero.org/google-docs/?bhX3TO
https://www.zotero.org/google-docs/?V8XGGe
https://www.zotero.org/google-docs/?Q3hoZp
https://www.zotero.org/google-docs/?Qm0cxT
https://www.zotero.org/google-docs/?1hM6hz
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computing power continues to grow exponentially (Fig 1) and AI models continue to grow in 

capacity (Figs 2, 3), soon reaching into the physical world by controlling robots. 

AI will change the very nature of the way we will conduct and communicate academic 
exploration across every discipline. While today’s language translation is far from perfect, 

translation performance by objective metrics is improving every generation of AI. It is only a matter 

of time before automated language translation and generation will exceed the performance of the 

average human translator. We believe every field at Columbia needs access to computational 

resources and training in how to leverage generative AI and modern compute and data 

infrastructure. 

 

Fig 1. Expected growth in computing power measured in GFLOPS/$ in the next decade, based on 

continuation of existing exponential trends. Shown on linear scale to emphasize actual expected 

performance gains during the period covered by the recommendations proposed in our report.  
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Fig 2. Growth of AI models in the past decade.  Figure from Epoch AI41 (log scale) shows a doubling 

approximately every six month 

https://www.zotero.org/google-docs/?PusJqV
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Fig 3.  Computational effort per AI model. Growth of AI models in the past decade (log scale)42,43  

https://www.zotero.org/google-docs/?PE9DhQ
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Why existing solutions do not satisfy our growing AI needs 

Currently, researchers can endeavor to meet their growing research computing demands in four 

different ways: (a) On-demand cloud services, (b) faculty-sponsored, shared high-performance 

computing clusters, such as Terremoto, Ginsburg, and Insomnia managed by the Shared 

Research Computing Policy Advisory Committee (SRCPAC), (c) Government supported federal 

and state compute resources, and (d) ad-hoc “under-the desk-and-in-the-closet” server clusters, 

which charitably can be called laissez-faire “edge computing”. 

Many hoped that cloud services would provide a long-term elastic solution to growing 

computational needs. Cloud services sound ideal: they take care of the effort, cost and overhead 

of managing, maintaining, and upgrading equipment, as well as the potential for efficient sharing 

across fluctuating needs of multiple users. However, in practice reliance on cloud computing 

resources can often be risky, even for large commercial entities and other universities with deeper 

pockets than Columbia. Commercial cloud computing resources are expensive, and are 

sporadically limited, based on fluctuating industrial and commercial needs44–47, leaving academia 

increasingly dependent on industry. As an indication that shared cloud resources are not 

sufficient, note that commercial entities are investing billions of dollars in their private wholly-

owned resources48–50.   

When used only intermittently, commercial cloud services can be cost-efficient.  Similarly, they 

may remain a preferred solution for peak use for some applications.  However, under sustained 

high-utilization, commercial cloud services are substantially more expensive per core-hour than 

comparable private resources. Charging by the hour also makes it difficult to plan for open-ended 

research, and disincentivizes exploratory research into new areas and potential applications, 

especially for fields that are not traditionally strongly funded. Standard cloud computing with 

metered rates also presents significant risks for research continuation during periods of variable 

or otherwise insecure funding over University-owned resources. 

The committee considered the possibility of recommending a policy change to eliminate overhead 

charges on cloud services, in order to make them more competitive compared with capital 

purchases, which have additional costs that are borne by the University. However, many counter 

arguments were presented as well.  Efficient broad use of the cloud likely requires additional 

administration, personnel, resources, and network infrastructure and support, that are general to 

https://www.zotero.org/google-docs/?Ry7oxw
https://www.zotero.org/google-docs/?CdC3e3
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the University, rather than specific research projects, which is nominally the purpose of indirect 

costs.  And critically, it is exactly because cloud services do not contribute to the University's 

capital accretion of computation resources that they should be charged overhead. We would like 

to encourage faculty to invest in capital accretion of computation resources, and therefore did not 

recommend that policy change. 

A second existing approach is to deploy large shared computing clusters such as those Columbia 

has successfully deployed over the past decade. Given its overall high utilization, this 

infrastructure has proven to be cost-effective relative to similar cloud services. However, access 

to clusters such as SRCPAC has remained relatively limited to advanced users, due to the high 

upfront cost of joining the system, and advanced skills required to utilize the system. A typical 

single server will cost $21K-$43K (2023) and last for five years. Similar clusters exist in other 

schools such as ZMBBI, Computer Science, etc. We see SRCPAC and other department-level 

clusters as precursors to the Discovery Accelerator facility recommended by this report. Training 

for SRCPAC is severely oversubscribed, and does not span the range of needs required for the 

cross-discipline success, hence our recommendation 2, amplified in the following section. 

Finally, many, if not most, faculty resort to ad-hoc edge computing, whether in the form of laptops, 

desktop computers, and high-end workstations, servers scattered across labs, closets, under 

desks and on shelves. Such solutions offer researchers guaranteed availability, relative cost 

efficiency (often consumer-grade commoditized components), administrative flexibility, and 

permanence beyond any specific project. Institutionally, however, the hidden costs are significant. 

Edge resources can be difficult to share and manage, they rarely have very high utilization rates, 

often lack coordinated back-up and archiving, and introduce numerous security vulnerabilities. 

They also incur energy costs from the associated power and cooling, and their delocalization 

limits targeted investments towards high efficiency cooling. Further, NYC’s new climate related 

Local Law 97 will soon increase significantly from fines related to excess energy use in buildings. 

Finally, local systems create heat and noise that adversely affects the working conditions of 

nearby researchers. 

We emphasize that there is widespread recognition and enthusiasm for State and National-level 

government sponsored AI infrastructure such as Empire AI (which we also strongly support), 

however, many questions remain.  First, we do not yet know the scale and timelines, leaving the 

University vulnerable and without sufficient computing power in the interim. Second, given that 
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these centers will serve so many constituents, of varying resources and needs, it is likely that the 

allocations guidelines will include specific regional and national research priorities, and will also 

include important and necessary considerations of equity and geographic diversity, to ensure that 

governmental HPC-AI resources do not further exacerbate existing disparities in state and federal 

support.  

Thus, while it is clear that any government investments in state or national AI-infrastructure will 

aid and support the University and its research, we predict very high demand for these limited 

resources and expect rapid growth of need. Therefore, we believe that academic institutions 
that aim to lead in AI-enabled research, must be able to satisfy many of their own 
computation needs independently and sustainably.   

Outline of methodology 
The committee progressed according the following phases 

1. Establishing the general landscape of options and levels available to the university, 

ranging from creating new services, expanding existing services, or outsourcing services 

2. Surveying and interviewing faculty, students and staff to understand where the 

computational needs of their fields are heading in the next decade 

3. Deciding on a set of long-term goals and short-term actions given these objectives and 

options 

From April 2023 until the submission of this report, the committee has met regularly roughly twice 

monthly, excluding summer and winter breaks. The original committee was expanded to invite 

representatives from all schools. 

After the first initial meetings debated the perimeter of the study, the committee designed a survey 

to capture needs and thoughts of as many stakeholders as possible. We endeavored to keep the 

survey as short and as open-ended as possible and to deliver it to many researchers at the 

university, including faculty, research staff, and postdocs. The survey as well as the raw 

anonymized responses are provided in the appendix. The goal of the committee was not to 

address all issues raised in the survey; rather the survey was meant to ensure that the needs and 

viewpoints of as many stakeholders as possible were being considered. 
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Following the survey, the committee asked representatives from each school and college of the 

university to perform their own analysis, write an interim report, engage in follow-up interviews 

and in-person discussions, and make recommendations suitable for their unit. These individual 

summaries are included in the appendix of this report with the individual unit and authors of those 

analyses listed. These interim reports do not represent the official position of those schools, but 

merely a subjective point of view offered by the school’s representative based on interaction and 

interviews with their colleagues, review of the survey results, and personal familiarity with their 

fields. Some schools and representatives did not contribute a position. 

Finally, after all interim reports and recommendations were completed, the committee set out to 

identify concrete recommendations for consideration by the university. These recommendations 

were discussed within and outside the committee, and feedback from various stakeholders were 

considered and debated.  

Survey Results  
Both quantitative (survey) and qualitative (interview) tools employed by this committee provided 

discipline-specific metrics regarding research computing. The appendix lists all survey results 

(anonymized) reflecting feedback from approximately 185 faculty, and 50 postdocs/associate 

research scientists (in addition to the valuable feedback and contextualization provided by 

committee members). Here, we organize the feedback into three areas: Basic Infrastructure, 

Existing High-Performance Computing, and New Needs for AI. 

Basic Infrastructure 

The survey exposed an overwhelming perception that Columbia University lacks the campus-

wide basic infrastructure both to support current use and to accommodate inclusion of the diverse 

user-base anticipated by the rise of AI across all disciplines at the University. Responses to our 

survey highlighted significant infrastructure disparities across buildings, departments, and 

schools—including basic needs like reliable internet connections. While some differences in 

computing infrastructure are expected across fields, modern network infrastructure, connectivity, 

and training are essential now. These structural deficiencies inhibit teaching and operations of 

University functions, and  fundamentally impede research effectiveness and productivity both 
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within and beyond the scope of this committee. Moreover—in research especially—data, 

education, collaboration, and communication are all critical currencies whose importance will 

expand exponentially in the near future. It is incumbent on the University to remedy these 

structural deficiencies to ensure that the benefits of our proposal are broad, accessible, and 

equitable across the University. Specific areas identified through our survey and discussions 

include: 

● Poor and inconsistent networking (e.g., insufficient wifi, low bandwidth, and bad remote 

access limit) 

● Poor communication and ineffectively structured website information about free or low cost 

access to existing computer resources 

● Existing faculty personal computer purchasing mechanisms and funding structures are 

insufficient to promote transition to research computing across disciplines 

● Training is either non-existent, not available for users at different levels of experience, or 

poorly advertised 

● Slow IT responses and expensive solutions whose cost falls back to departments 

● Inefficient bureaucratic processes regulating data acquisitions and access to systems 

● Lengthy and laborious process for providing access to our systems to outside 

collaborators 

● Lack of site licensing for commonly used productivity software and services such as 

OneDrive, Zoom, Adobe, etc. 

Existing High-Performance Computing 

For existing HPC, our survey shows that Columbia researchers either use “local” clusters, which 

may belong to one research group or a department, and/or the University’s shared HPC clusters, 

governed by SRCPAC. Many survey responses described concerns about the existing shared 

HPC resources, which can prompt the decision to use local clusters. More flexibility and better 

support would entice many users to join in shared computing, which is more efficient in terms of 

energy, space, and cluster usage. For context, the existing HPC clusters are purchased by 

individual faculty members who can now purchase between a quarter and multiple nodes roughly 

four times each year.  Typical options include: a standard memory CPU node, a high-memory 

CPU node, and a GPU node with different types of GPUs. Currently, one standard node costs 

about $16,000, with the other nodes more expensive.  (This exact model is changing slightly at 
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the time of writing, with the introduction of the Insomnia cluster). The survey demonstrated 

consensus that access to this current HPC system introduces structural frictions that reduce 

research effectiveness, some of which are real, others perceived. In preparation for an explosive 

growth in University research computing, the survey produced valuable insights into issues with 

our recent and existing HPC. Specific concerns include: 

● Cost is perceived as neither competitive nor transparent 

● Lack of training, so people do not know how to make the most of existing HPC 

● More flexible purchasing plans to lower the barrier to entry and/or distribute high one-time 

costs over 3-5 year grant cycles 

● Greater selection, e.g., centralized specialty clusters in addition to “generic” HPC 

● Dissatisfaction with queue times or time limits for big jobs 

● Lack of experts that can facilitate running large jobs 

● Lack of access to (or high cost of) large RAM systems (1-2 TB) 

● Continued access for recently graduated students, postdocs, and external collaborators 

● Easier access to big data 

● Better GUI support and interactive tools. 

New Needs for AI 
Unsurprisingly, our survey revealed many faculty who are eager to ramp up research in AI but are 

held back due to insufficient resources and expertise, which forms part of the basis for the present 

proposal. The training and testing of AI models requires storage and manipulation of large 

datasets and extensive specialty (e.g., GPU) hardware, which survey respondents did not 

presently have access to, but were seeking for their future research. Similarly, respondents are 

excited about the potential for AI in their research, but they (or their students/postdocs) need 

training and support to engage in this relatively new research area. Specific requests or 

suggestions include:  

● Significant increases to storage – which needs to be accessible on campus as well as 

collaborative partners outside Columbia – and needs to be secure (for data with personally 

identifiable information), but flexible sharing, backed up 

● Better data stewardship (e.g., the FAIR principles: findable, accessible, interoperable, and 

reusable) and lifecycle management 
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● Advanced training in specific areas 

● Basic training (e.g., general AI and cloud computing) 

● Some expert staff to assist researchers 

● Cloud integration – how and when to move, and manage cloud resources 

The research computing “pyramid of needs” 
For clarity, we have sorted the needs emerging from surveys, interviews, and discussions into 

five levels, based on a scale of ascending requirements. We model these five levels after 

Maslow’s classic Hierarchy of Human Needs. The base level shows foundational computing 

needs, without which the upper levels cannot be achieved, followed by the second tier, which 

represents the end-user service infrastructure required to pursue academic research across all 

disciplines. While outside the purview of this committee, we believe these basic first and second 
level needs must be fully addressed. It is a requirement that the university (CUIT) address and 

maintain all evolving infrastructure requirements and basic services required by all research 

faculty staff and students in a timely manner.  

The recommendations of this committee directly address the third, fourth and fifth levels of the 

hierarchy – enabling skilling, supporting guided exploration, and facilitating self-driven research, 

all intellectually-driven by disciplines themselves. While centralized units such as CUIT may be 

directed to tactically implement and support many of these higher-level needs, the scope of the 
needs must originate in the disciplines themselves and the disciplines must retain agency 
in their application and growth. For example, it is unreasonable to expect that a central 

administrative unit will decide and take responsibility for core decisions such as what language 

models best suit research in the Journalism school, or what suite of software tools is best for the 

Business School or the Medical School. The schools themselves must drive these decisions, 

subject to financial and logistical constraints.  
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Fig. 4. The research computing pyramid of needs 

Summary of emerging needs 
1. Computing power is like a utility. Basic and even advanced research computing is 

increasingly assumed to be available much like electrical and communication 

infrastructure, and physical space. Modern research relies very heavily on the physical 

instantiation of “Virtual Infrastructure” – the compute, storage, and networks needed to 

support it. The rise of HPC-AI has elevated the minimal level of infrastructure necessary 

for research significantly, and the university must make commensurate investments to 

match. This pressing need is like that of construction, renovation, and maintenance of 

buildings or laboratories, but serves the entire University.. A non-trivial level of research 

computing has to be available by default within the University without individual planning. 

2. Sharing resources is essential. No single researcher can acquire, operate, and maintain 

the scale and amount of compute and storage that will be needed to conduct cutting edge 

research in the future. This applies equally to much of the expert staff needed to operate 

and enable high-impact use. Many resources must be shared. Sharing also encourages 

high utilization and effective use of the resources, while also facilitating collaboration. 

3. AI is key to creativity. Deep learning and especially generative algorithms, applied across 

all domains, such as genomics, material discovery, law, music, arts, journalism, 

architecture, medical diagnostics, are fast becoming a means to generate new ideas and 

discoveries. As a university whose entire reputation is based on the ability to discover and 
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innovate, access to generative AI tools and the ability to modify existing AI tools and 

develop new ones are key to remaining competitive and even relevant. 

4. Data is the asset. AI algorithms are increasingly open source, and computing resources, 

though expensive and in limited supply, are commoditized. A remaining differentiating 

asset is data. For example, end users can get many services for “free” from Google -- but 

not access to much of Google’s collected data. Data is also crucial to creating unique 

generative AI capabilities51–55. This is certainly true for domain specific foundation models, 

but also for diverse training data that includes the margins and rare, but important, 

phenomena. Effectively managing this data throughout its lifecycle is crucial. Robust 

storage solutions are needed to preserve and share valuable research findings and ensure 

regulatory compliance. However, simply storing data isn't enough. Lifecycle management 

practices ensure data is properly categorized, secured, and archived or purged according 

to its relevance and legal requirements. Therefore, universities must enable researchers to 

collect, curate, share, and manage data assets reliably, safely and ethically.  Cost-effective 

scalable solutions should be available by the University, either on-site, or a mix of on-site 

and the cloud resources. This approach should include support and expertise in data 

lifecycle management, standards, FAIR principles56,57, storage, curation, and 

dissemination. Increasingly, data curation and dissemination is also required by Federal 

research sponsors58, providing even further incentives for efficient management.  Here, 

CUIT and the University Library can play a key role, much as they have in the past. 

5. Small projects and departments need big resources too. While it is possible to get 

government funding and computational resources for mature projects in science and 

engineering, academic innovation often emerges from many small projects that have no 

dedicated federal or state funding, and no central administration. Increasingly, these “small” 

projects rely on sophisticated compute and data resources.  This is also true in domains 

outside of STEM that traditionally were not typical users of HPC, and whose overall funding 

models may differ across all stages of research (e.g. often supported through internal or 

private as opposed to Gov’t sources59.) Many of these projects, as small as they may start, 

will progressively require large computing power to germinate. Without access to sufficient 

resources, the innovation stream will slow. 

6. Commercial cloud resources do not match the nature of academic research. Cloud 

computing is not a solution to baseline research computing needs. It is expensive, has 

https://www.zotero.org/google-docs/?sws0rx
https://www.zotero.org/google-docs/?Rz2pOZ
https://www.zotero.org/google-docs/?qG0eTn
https://www.zotero.org/google-docs/?EmA8PG
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limited availability especially at peak times, and is risky in terms of runaway costs and 

planning. Most importantly, dependency on cloud computing (commercial or government 

provided) makes academia subservient to industry and government priorities. Cloud 

services can serve as an important add-on to handle peak loads, temporary fluctuations, 

or commoditized jobs, and will certainly be a component of Columbia’s plan going forward, 

but it cannot be the core of our research and data infrastructure. 

7. Cost structure of computing matters. Enterprise-class computing hardware can be 

purchased and supported according to a specific cost and renewal schedule that is aligned 

for typical STEM funding cycles and can be incorporated into shared-facilities that allow for 

high overall utilization. This shared resource can also be flexibly allocated and proportioned 

to support access tiers, yet still allow researchers and departments access to modern and 

powerful compute and data resources.  Also, many of the costs of the virtual infrastructure 

are also shared across (and benefit) the entire university. In contrast, cloud computing is a 

tightly metered service that incurs significant overhead, and is only available during the 

performance period of a grant, and provides no future residual value.  Ad hoc, or local 

assets are often the lowest cost, and remain available indefinitely, at low marginal cost to 

the investigator, though offer lower opportunity for broader sharing and utilization to others 

vs enterprise-class resources.  Faculty consider these cost structures when deciding which 

form of research computing to use and invest in. The University must support continued 

access to resources to encourage and promote trust in these shared centralized assets. 

8. Training and support is essential. Training and support staff are critically needed for 

training students, faculty, staff and new users. However skilled professional personnel are 

costly, especially with increased industrial demand. Central coordination of support and 

expertise at the hardware, data, and runtime engineering are essential to broadly support 

the university, but cannot scale to provide hands-on domain specific support to every unit 

or department. Therefore, we expect the disciplines themselves to drive and organize much 

of the domain specific training (with some central support) rather than being wholly 

centralized.  Further, a substantial collection of training material and resources (eg. free 

tutorial videos) exists online to cover many introductory and even advanced topics.  

9. Data security and privacy needs to be considered from the start. Data privacy and 

security are becoming increasingly important for analyses of granular geospatial data, 

personal identifying information (PII), and protected health information (PHI), among social, 
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behavioral, and health scientists across the University.  Some can only be accessed on 

security-certified platforms (e.g. HIPAA certified for PHI). Data breaches are costly due to 

loss of reputation, fines, and remedial actions. Privacy must be maintained for research 

study subjects, patients, and employees. University intellectual property must be protected. 

Therefore, the university must protect the digital storage environment and compute facility 

against external access to private data.  Service providers must enter contractual 

agreements to protect private data, and infrastructure must be put in place to authenticate 

and authorize users for accessing private data. The system must support the minimum-

necessary paradigm, where users are given access to only those aspects of private data 

that they need to carry out their current task (e.g., hide patient identities if they are not 

needed for the current study). A formal governance structure must coordinate the access 

to private data and administrative coordination across University units involved in 

purchasing, contracts, user authentication, and systems access authorization must 

develop clear and streamlined processes for data acquisition, sharing, and access. Meeting 

Federal Information Security Modernization Act (FISMA) compliance requirements around 

governance and processes for privacy and security will enhance privacy and facilitate 

government contracting. 

10. Solutions must be sustainable financially, procedurally, and environmentally: 

Whatever resources are chosen, they must be renewable, i.e. upgradable every five years 

or less. We need a faculty-led standing committee to manage the renewal process and an 

endowment to support it. The resources should also be highly energy efficient to reduce 

energy consumption and run on renewable energy, where possible. 

11. Now is the time to raise funds. Many potential donors interested in having an impact on 

research understand that the most long-lasting donor-attributable impact may be had by 

providing the university researchers access to computational resources and training to 

catalyze and amplify their innovation ability. Many potential benefactors made their fortunes 

using AI and are well aware of its power. Funders also get more excited about funding 

pioneers than asking to support catch-up efforts.  Now is the time to raise and the window 

is short because AI is a “winner takes all” game.   
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Recommendations 
We believe that the two key recommendations below will enable Columbia University to thrive in 

an era of where research is increasingly enabled by high-performance computing and AI. 

1. Create the Discovery Accelerator 

The University should raise and invest $25M per year (=$250M over a decade) to create 
and sustain a facility which we tentatively call the Discovery Accelerator.  

1. Create a University resource (on- or off-premises) that will comprise necessary 

computational resources and staffing to operate a mid-sized computational capacity of 

approximately 60 fully-loaded computational racks with various evolving combinations of 

GPUs, CPUs, and high-performance storage (and whatever new computing technologies 

become available), and have flexible architecture to support both supercomputer-style, 

and node-style workloads. This unit should be lean and efficiently staffed, while offering 

“containerized” management (i.e., the ability to run custom virtual machines) and security 

and sharing controls that allow for facile collaboration, and protection. The Accelerator 

must also support secure data enclaves for discovery on protected or private data. Users 

must be able to dock and control their own applications and virtual machines, with 

technical assistance if needed.  

2. The proposed budget is intended to sustain operation for about a decade, including 

hardware upgrades on an ongoing basis. This investment will ensure that the university 

enables ANY of its faculty and researchers to embark on an AI-accelerated future sooner 

rather than later.  

3. During this first decade, the university will have the opportunity to raise additional funds 

and explore ways to systematically allocate operating budget, based on the financial 

analysis of operating expenditure of the accelerator. These calculations will factor such 

aspects that are difficult to anticipate at this early time, but will likely include the increased 

grant competitiveness, generated revenue from new or enhanced research and discovery 

enabled by the accelerator, benefactor interest in supporting specific research, 

educational, commercial, and societal impact generated by the accelerator, or AI more 

broadly. We also anticipate some funds to come from in-kind or cost-sharing contributions 

as well, for heavy or prioritized users. In other words, faculty will partner with the 
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University, and prove the essential value of University investments in the discovery 
accelerator over the next decade, and help sustain it beyond. 

4. Implementation of the accelerator should not be postponed or linked to new construction 

or acquisition. The accelerator might initially be housed in existing spaces, such as Uris 

hall basement, power and space permitting. External spaces including new or leased 

space with low communications latency to data are also a possibility  Considerations for 

“off-prem” should evaluate proximity, cheap reliable power, and high-bandwidth 

interconnects and peering, and may offer significant savings on operating costs (e.g. 

LL97). We have identified the Nevis and Lamont campuses as a prime location for this 

purpose. 

5. Government-provided and industry-provided cloud services (such as Empire AI, Microsoft 

Azure, Google Cloud and Amazon AWS) should not serve as the core accelerator since 

Columbia does not have direct control over their deployment and allocation priorities. 

However, the University must still engage vendors and other partners to negotiate 

favorable rates and access, for both routine compute and storage, as well as peaking 

capacity. 

6. A faculty committee reporting to the EVPR should be established to govern the operational 

and technical aspects of this facility and direct its ongoing development (see Governance 

section). 

High level financial analysis 
Committee members have discussed financial aspects of this recommendation with numerous 

stakeholders and knowledgeable persons including faculty and staff at peer institutions, people 

building and managing data centers at companies and universities (e.g. Apple, Google), sales 

representatives of large equipment vendors (e.g. Nvidia) who are intimately familiar with activities 

at peer institutions, as well as CUIT staff at Columbia familiar with existing costs and expenses.  

We considered two prototypical “fully loaded racks”, one for GPU and one for CPU. Both these 

systems are state of the art (SOTA) at the time of this writing, and the exact configurations should 

be selected by the faculty leadership and CUIT at time of purchase.  Naturally, as time passes 

the technology will improve, and we expect the performance to increase exponentially but we also 

assume that the price per SOTA rack will remain roughly constant. We also factor equipment 

upgrades every five years on a rolling basis (= 20% of the equipment every year).  
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A fully loaded CPU rack contains 8 nodes, each with Dual Intel Xeon (28 cores each) 

 16 Xeon CPUs per rack. Total rack cost $240K   
A fully loaded GPU rack contains 4 nodes, each node is an Nvidia DGX style module, each with 

8 GPUs, 640 GB GPU memory, 2TB system memory, Dual Intel® Xeon® Platinum 8480C 

Processors.  32 GPUs per rack, 8 Xeon CPUs per rack.  Total rack cost $1.7M   
A high performance data storage rack is based on ~ 10 PB rack of enterprise storage (Dell 

Isilon H7000/A3000 mix or equivalent), with an expected 10 year cost of ~5M per rack. 

 

 

Power cost. The following calculations are based on $0.11 per kWh, which is a lower rate than 

in NYC, but is available at some regional data center locations, as well as the area around the 

Nevis Campus. The area near Columbia’s Lamont Campus has even lower average rates, on the 

order of $0.08.  Rates are likely to go down over the years as renewables are introduced into the 

grid. 

Estimated build times: 3-5 months design/engineering, 1-2 months permit/bid, 12-23 months 

construction, 1-2 months commissioning 

  

 
Estimated costs for construction and operation of the Discovery Accelerator over a 10-year 

period. Costs include setup, computers, power, and personnel. Costs do not include real estate. 
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Possible geographic location of the accelerator: Nevis or Lamont 

Campuses, or surrounds. 
Columbia’s NYC campus has several limitations for hosting the Discovery Accelerator hardware.  

First, power and cooling are limited and existing facilities cannot support this scale of hardware 

without major renovation and upgrades. Second, the utility rates in NYC are high when compared 

to surrounding areas. Further, the high-energy requirements for the system could hamper the 

University's ability to meet Local Law 97 requirements9, leaving us susceptible to recurring fines. 

We note that many large companies involved in AI tend to own their own physical data centers 

rather than using cloud services for reasons of access control, operational cost, and real estate 

investment. From informal discussions with service providers, we found that large companies 

(e.g. Microsoft) tend to own about half of their data centers, and rent others from service providers. 

Whether they rent or own depends generally on whether they have access to the land and power 
in the desired geographic location; they will rent only as a second choice. When companies rent, 

the datacenter will generally provide only the infrastructure to house the computers: space, 

network interconnects, power, cooling, and physical security. The computational hardware will be 

owned and operated by the company.  

Luckily, Columbia owns several locations where it has both land and power at the needed scales, 

including Lamont, Nevis, and other locations upstate. Both the Nevis and Lamont campuses are 

outside NYC limits, and have lower utility costs. As an example, the Nevis campus has relatively 

unused physical structures (e.g. the now defunct Columbia Press building) that may be cost-

effective to repurpose.  The area around Lamont Campus has significantly lower average energy 

prices than NYC or near Nevis. Moreover, both are close enough to the main campuses to provide 

low latency, as well as within 30 minutes drive from campus to allow for physical access when 

needed; Lamont has an hourly weekday shuttle from the Morningside and Manhattanville 

campuses. At the same time, the campuses are far enough from NYC that they are subject to 

lower power costs and not subject to power usage fines. Both these sites could be considered 

possible locations for the Discovery Accelerator Facility. 

Cost Comparisons to Cloud Resources 
One persistent question that frequently arises before making capital investments in compute 

resources is the question of on-premises versus cloud-based platforms that are available as a 

fee-for-service. Columbia-owned resources offer full control of both the environment and 

https://www.zotero.org/google-docs/?DbegwE
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availability, and can easily be directed towards University research goals. But it also demands 

upfront and continuous investment in hardware, software, and IT staff, in addition to space and 

power.  Cloud services, on the other hand, offer a pay-as-you-go model. One only pays for the 

resources they use, making it more flexible and potentially cheaper for rapidly fluctuating 

workloads.  

However, cloud costs are always metered, and can add up significantly over time, especially if 

the usage is not carefully managed. (We note that poorly managed jobs are also a local concern, 

either with real costs from power consumption or administrative management, or opportunity cost 

for lost cpu/gpu cycles.) Under high-use scenarios, cloud resources are generally considered 

expensive compared with owned-resources, something that other Universities also report60. This 

can be seen in real time, on one web page given facts about one of Stanford’s clusters, “Sherlock”, 

where a running estimate is provided for equivalent costs of running the cluster’s compute on on-

demand cloud instances instead, which for this current month (June 2024) would be over 3.2 

million dollars61.   

Also, for cloud use, some scientific suites or programs may need to be rewritten and ported. Data 

ingress and egress costs can be significant if large data sets need to be moved, though this is 

also a concern if the local resource needs to access a cloud based data set.  Ultimately, the 

relative value or expense depends on the specific needs, usage patterns, and overall 

organizational goals.There may also be some indirect implications on value, relative to the nature 

of Cap-ex versus Op-ex expenditures, or other costing principles, which are outside the scope of 

this report..   

It is the opinion of this committee that having a significant Columbia-owned resource is 

worthwhile, especially if it is governed to drive broad and effective adoption across many 

disciplines, and thus has overall utilization. One expected use of the Discovery Accelerator  is the 

training of domain specific foundation models which require enterprise class GPUs. For reference, 

we compare the three year cost of an instance on AWS with eight H100 GPUs, assuming 80% 

utilization.  Using the on-demand rate, the cost would be $2.07M62.  With the 3 year reserved cost, 

it would be ~$908K.  Prices drop further with providers like Lambda63, which offers similar 

instances for $587K, By comparison, the University's expected costs over that same period would 

be ~ $460K.  The proposed Discovery Accelerator would have ~120 such machines, resulting 

>5M per year differences  against Lambda, and >18M per year against the “3 year reserved” 

https://www.zotero.org/google-docs/?hPIA5e
https://www.zotero.org/google-docs/?6K2Csa
https://www.zotero.org/google-docs/?A6DU7T
https://www.zotero.org/google-docs/?fWO2Kn
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Amazon rate.  The University cost estimate above includes power and data center costs, but not 

the operations staff, which is expected to be considerably smaller than this differential.   

   
AWS Cloud Costs (as 
of June 2024)   Lambda Cloud 

Instance type  p3dn.24xlarge p4de.24xlarge p5.48xlarge 8x NVIDIA H100 SXM 
      
On Demand per hour  $31.21 $40.96 $98.32 $27.92 
3 yr reserved per hour)  $10.42 $14.46 $43.16  
Effective Hours per year 7012.8     
Three year OD  $656,608.46 $861,732.86 $2,068,495.49 $587,392.13 
Three year Res  $219,220.13 $304,215.26 $908,017.34  
University Owned      
Estimated Hardware Cost     $400,000 

  
Power and Cooling 
(kW)  Over 3 Years  

Power per machine (kW) 10.2 17  $39,341.81 $39,341.81 
Spot rate (kW/hr) $0.11     
NJ datacenter cost64 ($ 
per watt over typical life) $11.40 $19,380.00    

   (cost over 3 years) 
University cost over 3 years (not 
including staffing) $458,722 

 

That said, we expect cloud resources will also be used, and will complement the Discovery 

Accelerator for peaking capacity, hardware diversity, and particular usage types.  We expect the 

governing body of the Accelerator will periodically assess both the relative costs and expected 

utility to optimize the overall benefit to the research community and University, just as they will 

review the hardware selections during refresh and update cycles.  

2. Enable all disciplines to engage in Research Computing 

The University should invest $5M per year over 10 years (=$50M in total) to facilitate 
disciplinary research computing engagement by hiring faculty and staff and offering 
grants for creation of educational materials.  

To support the diverse needs of Columbia’s research community, the university needs to balance 

centralized and local, discipline-specific support of the Discovery Accelerator and related research 

computing tools and services. As is the case today, research support varies greatly by discipline 

https://www.zotero.org/google-docs/?Sm4GWo
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and by the level of funding and expertise available to different research communities. The 

recommendation seeks to enable all disciplines interested in engaging in research computing to 

do so, by providing a range of services and options aligned with faculty and researcher needs, 

including those managing sensitive/restricted data. 

  

A faculty advisory committee will provide guidance and direction to facilitate the best use of 

centralized support resources, and also work with academic departments and schools to help 

them drive their own development of support resources for research computing. 

The proposed budget of $5 million per year includes researcher-focused staff positions in CUIT 

and Libraries, funding to assist local/discipline-specific support resources, funding for tools, and 

funding for a mini-grant program to accelerate adoption across disciplines. This funding will 

support the following:  

 

1. Computational Training - provide comprehensive computational training to support all 

disciplines to use research computing including but not limited to AI/HPC.  This will build 

upon the Foundations for Research Computing program with a particular focus on 

fostering local departmental and school training and developing curricula for introductory 

to intermediate levels of expertise. Centralized training will be provided jointly by CUIT 

and Libraries staff along with coordinated efforts with local schools and academic 

departments. Suggested: 4 full-time equivalent (FTE) positions. 

2. Research Data Training - provide comprehensive research data training to support all 

disciplines in creating, managing, disseminating and preserving research data and 

research outputs. Data Curation65 and data management plans are of particular 

importance, including but not limited to generative AI and large language models, as well 

as support for the licensing, copyright and use restrictions that may accompany acquired 

datasets. Faculty also submitted a set of recommendations in the 2022 Provost Advisory 

Committee for Libraries Year-End Report, including a coordinated effort by Libraries, CUIT 

and EVPR to foster a greater understanding and use of data storage and sharing 

platforms, and promote greater visibility of reliable data storage platforms to the Columbia 

researcher community.  Suggested: 4 FTE positions. 
3. Discipline-Specific Training - provide funding for specialized support within the 

academic disciplines, in order to apply the appropriate technologies and infrastructure 

https://rcfoundations.research.columbia.edu/
https://rcfoundations.research.columbia.edu/
https://learn.microsoft.com/en-us/ai/playbook/capabilities/data-curation/
https://learn.microsoft.com/en-us/ai/playbook/capabilities/data-curation/
https://drive.google.com/drive/folders/1i8FCy1I4SqhW3Dr6ruob0u--gPebwMTT
https://drive.google.com/drive/folders/1i8FCy1I4SqhW3Dr6ruob0u--gPebwMTT
https://drive.google.com/drive/folders/1i8FCy1I4SqhW3Dr6ruob0u--gPebwMTT
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needed for particular research and scholarly needs. This distributed support will work 

closely with CUIT and Libraries to help enable all disciplines to engage in AI and research 

computing.  Suggested: 8 FTE positions. 

4. Develop Training Materials - develop and/or acquire training materials to support all 

disciplines in using research computing and AI/HPC. In many disciplines, developing 

training material will require faculty and researcher engagement to develop specialized 

educational materials, balanced with a need for more general training and curricular 

materials developed by Libraries, CUIT and EVPR. Libraries can also support faculty in 

the creation, discovery, publishing and dissemination of discipline/domain-specific 

educational materials, via the Academic Commons and published as open educational 

resources (OER), in order to accelerate knowledge sharing across the university.  

Suggested: 1 FTE position. 

5. Experimentation and sandbox services and tools - develop and/or acquire resources 

to support experimentation in new and emergent research technologies to foster use 

across all disciplines. In this quickly changing technical environment, it is crucial to provide 

accessible methods to try out new tools, technologies and computational methods, 

especially for those faculty, students and researchers who may lack sufficient local 

capacity. These tools will foster experimentation and testing of large language models and 

related systems, provide a space for evaluating computational methods and data curation 

with support from CUIT and Libraries, facilitating training and education, and accelerate 

knowledge transfer of emergent computational methods via active exploration and 

experimentation. Suggested: 4 FTE positions + $350,000/year Tools Budget. 

6. Enhance information literacy and competencies - curate, catalog and provide 

discovery to collections of computational methods, create incentives to share workflows 

to accelerate research activities, and address issues of digital rights, algorithmic bias and 

trust. Enhancing curation and discovery will build upon Libraries existing Academic 

Commons and CUIT Columbia Data Platform and related programs to support faculty and 

researcher dissemination of research activity, address scientific reproducibility and 

accelerate knowledge transfer and use of new computational methods. We advocate for 

open, documented, transparent methods and approaches to support the mission and 

values of Columbia University.  Suggested: 1 FTE position. 

7. Support long-term sustainable access - foster discovery, access and re-use of research 

output, as required by federal funding agencies, by enabling researchers to deposit large 

https://academiccommons.columbia.edu/
https://academiccommons.columbia.edu/
https://academiccommons.columbia.edu/
https://academiccommons.columbia.edu/
https://academiccommons.columbia.edu/
https://dataplatform.cuit.columbia.edu/
https://dataplatform.cuit.columbia.edu/
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language models, code, datasets and other machine learning tools into 

approved/appropriate repositories such as the Academic Commons, Columbia Data 

Platform, and appropriate domain-specific data sharing repositories. Faculty and 

researchers defined this specific need in the 2022 Provost Advisory Committee for 

Libraries Year-End Report, to “encourage the migration of Columbia researcher data to 

reliable and secure storage platforms that meet compliance requirements and align with 

best practices in data management.” Libraries will enhance current efforts to foster 

description, deposit, discovery, management and educate faculty and researchers in 

author rights including license, rights attribution and copyright. CUIT will enhance current 

efforts in providing research data storage, discovery, analysis and collaboration.  

Suggested: 1 FTE position 

8. Consultation/Support for Building & Customizing Large Language Models - provide 

consultation, training, documentation, awareness and onboarding for students, faculty and 

researchers in the building, use and application of large language models and machine 

learning tools. CUIT should expand current efforts to provide general consulting and 

advisory services to assist faculty in the development and use of large language models 

and related technologies, connect researchers across disciplines to foster consistency and 

reduce duplication of efforts, and provide liaison support for domain/discipline-specific 

departments in developing their own technical expertise.  Libraries should expand current 

acquisition efforts to acquire and manage data sets in support of large language model 

development, retrieval-augmented generation, and vector databases, and emergent 

techniques, as well as provide guidance on copyright and use restrictions. Suggested: 1 

FTE position. 
9. Researcher Training Support - provide one-time funding to support training and foster 

adoption of AI/HPC, help faculty and researchers experiment and learn how to use 

AI/HPC, and encourage the adoption and creation of computational methods to support 

AI/HPC across all disciplines.  CUIT, Libraries and EVPR should work with the faculty 

advisory committee and academic departments to administer one-time mini-grants and 

provide support as needed to accelerate adoption of AI/HPC in new and emergent areas. 

Suggested: Approximately $800,000 per year for up to 20 mini-grants per year. 

https://academiccommons.columbia.edu/
https://academiccommons.columbia.edu/
https://dataplatform.cuit.columbia.edu/
https://dataplatform.cuit.columbia.edu/
https://dataplatform.cuit.columbia.edu/
https://drive.google.com/drive/folders/1i8FCy1I4SqhW3Dr6ruob0u--gPebwMTT
https://drive.google.com/drive/folders/1i8FCy1I4SqhW3Dr6ruob0u--gPebwMTT
https://drive.google.com/drive/folders/1i8FCy1I4SqhW3Dr6ruob0u--gPebwMTT
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Governance 
The committee discussed what governance architecture would be best appropriate to manage 

the proposed recommendations. For example, should it be under the EVPR, or under CIO, or in 

some joint responsibility.  

Two key considerations emerged: First, we recognize that those who bear ultimate responsibility 

for the success of the proposed center over its initial 10-year duration are the research faculty 

themselves. Since there is no responsibility without authority, decisions pertaining to the 

investment and operation of the center should ultimately be directed by the research faculty and 

the EVPR.  

Second, it was also recognized that technical capabilities for design, construction, and operation 

of both the proposed accelerator (recommendation 1) and some of the educational thrust 

(recommendation 2) would be in the traditional purview of a unit such as CUIT, and therefore 

under the direction of the CIO.  

Since we believe the proposed center will be essential to future research activities, and since the 

success of all research activities will ultimately determine the viability of the center, we 

recommend that research faculty must maintain full control (not just provide “input”) as to all 

development and governance aspects of the proposed center, with CUIT or an equivalent unit 

bearing responsibility for its ongoing implementation and operation. In other words, the persons 

operating the center would report to a research faculty director(s). 

Conclusion: A bifurcation of futures 
The next decades will see a bifurcation of growth in the academic sector, much like we are seeing 

a bifurcation of growth in the commercial sector. Examination of the evolution of the commercial 

landscape paints a picture of diverging futures: A substantial part of the entire economic growth 

in the past few years has been dominated by companies that have embraced high performance 

computing, machine learning and Generative AI. Those companies that fail to make similar 

investments may be at a competitive disadvantage with potentially adverse outcomes to their 

existing business models. 



 

 

34 

 

Fig 5. Annual corporate investments in AI are growing exponentially (Netbase) 

Similarly, we believe that universities that embrace new forms of augmented and accelerated 

discovery, creativity, innovation, and scholarship will thrive and lead, and those that do not will be 

relegated to a second tier. We want to ensure that Columbia University belongs to the leading 

tier, and that its students are equipped to become leaders of similarly advancing institutions in 

industry, government and academia. Our recommendations for the Discovery Accelerator 

revitalize the relationships between faculty, infrastructure, CUIT, and the Libraries, catalyzing 

synergistic benefits for research and the whole University enterprise.  It is important to emphasize 

that the field of AI has historically tended to evolve in a winner-takes-all fashion. Therefore, 

delaying our embarkation on this journey by a few years “to see what other universities are doing” 

may be a grave mistake. We must act quickly and decisively.  
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Appendix 
The following pages include accessory information, and summaries reflecting the needs of 

individual schools and units at Columbia. These summaries have been authored independently 

by representatives of those schools. 
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Peer interest and investment in HPC/Compute and AI 

Columbia is not alone in recognizing the potential impacts of HPC and AI on universities2,3,5,6,66–

68.  There have been large investments by other institutions across the entire domain of the 

research and academic enterprise, which presents some challenges disambiguating the specific 

details of their investments, which range from specific hardware purchases, faculty hires, 

department and center creation, and building construction.  We note that all of these, however, 

should be seen as recognition that HPC and AI will have profound impact on the generation and 

interpretation of knowledge, and requires significant attention, strategy, and investment for the 

modern research university. Recently, Johns Hopkins commissioned Deloitte to perform a 

benchmark study of JHU and public and private peers with regards to research computing and 

AI.  Their report identifies many of the same issues and opportunities that our panel deliberated 

to make our recommendations.  These include the need for large-scale investment in compute 

infrastructure and personnel, at a size that was unprecedented before AI and big data, and one 

that requires continual investments to evolve with changing needs. Other takeaways included the 

need for centrally coordinated, but faculty-guided investments, personnel, and strategy.  This 

allowed for efficient sharing and joint central and faculty investments in the compute infrastructure 

for mutual gain.  The larger compute needs also drive much higher power and cooling 

requirements, shifting compute and datacenters away from the main campuses.  Further, while 

cloud resources were considered, most sites reported a lifetime expense per compute unit as 

significantly higher for cloud-based vs university-owned resources.  Beyond the above listed 

report, members of the committee have also had broad discussions with both academic peer 

institutions69,70 and industry about proposed or ongoing investments in HPC/AI/Storage hardware 

by Universities that are of similar scale to what is proposed in this report.   

https://www.zotero.org/google-docs/?kgnwQc
https://www.zotero.org/google-docs/?kgnwQc
https://www.zotero.org/google-docs/?LDjP9c
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Survey 

A survey was issued broadly to all faculty and postdoctoral researchers soliciting information 

about future research computing needs. The survey was also available on the open web page 

where any Columbia-affiliated person could provide input or reach out to committee members: 

https://research.columbia.edu/research-computing-strategy#!/%23cu_webform-21235  

https://research.columbia.edu/research-computing-strategy#!/%23cu_webform-21235
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School of Engineering and Applied Sciences (SEAS) 

Hod Lipson 

The School of Engineering and Applied Science (SEAS) is home to many departments whose 

research activity is computationally intensive by nature, ranging from physics-dominated 

academic disciplines such as mechanics, electrical, chemistry and materials, to medical and 

human-centered areas such as biomedical engineering, and more computationally focused areas 

such as computer science, applied math and industrial & operations research. Most practical 

application areas, such as Robotics, span multiple academic disciplines. 

Research in SEAS has traditionally consumed research computing in three primary ways: (a) High 

performance simulations, (b) Data-driven modeling and machine-learning processes, and (c) 

Design automation, search and optimization. These three application areas are often intertwined, 

and are used for modeling, insight, forecasting, control, creativity and decision-making 

applications. 

In particular, while automation in design and optimization have long been a consumer of research 

computing, the recent advent and success of Generative AI tools, has highlighted two key notions: 

One, that generative design tools will rapidly accelerate scientific discovery and engineering 

design and are therefore key to any science and engineering entity tasked with discovery and 

innovation, and second that the tools for generative design require very large amounts of 

computing power and data, and therefore access to computing power and datasets could become 

a bottleneck to innovation. Certainly, this challenge is evident in the frenzy of leading industries 

attempting to build generative models and acquire computational resources to run these 

generative models and own the datasets to train them. 

In addition to computational power, it has become clear that unique datasets have become 

essential assets. As creativity is increasingly commoditized through generative AI, it is the unique 

datasets that are used to train and fine-tune these models that hold the key to unique innovation. 

As academia has traditionally struggled to collect, manage, and secure large datasets, this gap 

is becoming a problem and making academic research increasingly dependent on external 

resources. 
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While faculty, postdocs, staff and graduate students in SEAS have been involved with 

computational research for a long time, the growing importance (if not dominance) of 

computational aspects combined with limited resources is straining innovation. Many if not most 

projects begin as small exploratory endeavors, and if these initial explorations do not have ready 

access to germinate, the innovation pipeline will dry up. Similarly, as projects begin to grow, if 

they are stifled by lack of access to computational resources and data storage, their growth too 

will be throttled. Finally, as researchers turn to industry to fund or fulfill these growing needs, they 

open themselves to become subservient to short-term industry goals, constraints, and priorities. 

Thus, in an attempt to maintain the competitiveness and independence of SEAS research, access 

to research computing is becoming an essential utility as important and basic as power, space, 

and communication. 

Key observations 

1.  The data is the asset. As AI algorithms are open source, computing power is being 

commoditized, and programming talent is ubiquitous, the only remaining asset is DATA. 

For example, you can get almost everything for free from Google -- except their data. Data 

is also the bottleneck to creating unique generative AI capabilities. Therefore, universities 

must enable researchers to collect, curate, and manage data assets.  

2.  Generative AI is key to engineering creativity. Generative algorithms, applied in 

various engineering domains, such as genomics, robotics, material design, antennas, etc, 

are the new way to generate new ideas and discoveries. As a school whose entire 

reputation is based in the ability to innovate, access to generative AI tools and the ability 

to modify existing AI tools and develop new ones are key to remaining competitive and 

even relevant. 

3. Sharing resources is essential. No single researcher can acquire, operate, and maintain 

the amount of computing needed in the future. Resources must be shared. 

4. Small projects need big resources too. While it is possible to get government funding 

and computational resources for mature projects, academic innovation begins with many 

small projects that have no funding, but these small projects still need large computing 

power to germinate. Without access to fertile grounds, the innovation pipeline will dry. 
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5. Computer power is a utility. Basic research computing is increasingly assumed to be 

available much like electricity, communication, and real estate space. It has to be available 

without planning. 

6. Cloud does not match the nature of academic research. Cloud computing is not a 

solution to baseline computing needs. It is very expensive, has limited availability 

especially at peak times, and is risky in terms of runaway costs and planning. It makes 

academia subservient to industry priorities. 

7. Cost structure of computing matters. Computer equipment is free of overhead and lasts 

indefinitely (like a utility). In contrast, cloud computing is a service that incurs overhead 

and is only available during the performance period of a grant. This cost structure is 

therefore part of the calculation made by many faculty. 

8. Training and support desired but difficult to scale. Training and support staff are 

needed for training students and new users, but dedicated personnel are expensive, 

difficult to keep updated with changing technologies, and difficult to scale to many people. 

Also a substantial amount of training material and resources (eg. videos) are already 

available online. Therefore, investing in training personnel may not be cost effective 

(compared to using the same funds for cycles). 

9. Need for a local solution. While it is tempting to put datacenters remotely, placing them 

“in someone else’s back yard” may not be ethical. If we consume computing power we 

need to learn to deal with it locally. 

10. Solutions must be sustainable financially, procedurally, and environmentally: 

Whatever resources are chosen, they must be renewable, i.e. upgradable every five years 

or less. We need a standing committee to manage the renewal process and an 

endowment to support it. They must also be sustainable from an environmental point of 

view. 
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Graduate School of Architecture, Planning and Preservation 

(GSAPP) 

Laura Kurgan 

INTRODUCTION 

GSAPP uses computation in studio settings and in research environments. Each student in design 
studios has a computer at their desk loaded with cloud-based software with a range of 
computational design tools as well the more familiar suites of software. GSAPP has a number of 
Centers and Labs which engage in research, which often do require high performance computing. 
However, most of our faculty do not know what they have access to, paid or unpaid, through the 
larger university network. I would like to use this opportunity to make sure our faculty know what 
is available to them, and also, how to make educated choices based on what is available. 
  
The survey was sent out in the summer and was ignored by our faculty. However, computation is 
used at quite a high level on a daily basis by faculty and students across the school. The reasons 
for non-response were likely threefold: a.no-one was around, b.the questions were not geared 
towards a creative/design approach to computation which our faculty need and c. many of our 
faculty are practitioners with offices outside the University.  For this last group the use of 
computation is likely decided by IT people in their offices, and it is important for this committee to 
capture the needs of these faculty to understand research and training needs within the school in 
terms of emerging technologies and rapid change in our field outside of the university. 
  
Because of the low response rate, this document summarizes conversations with 5 GSAPP 
faculty across 4 out of 8 departments at our school including, Architecture, Urban Planning and 
Design, Historic Preservation, Computational Design Practices. We still need input from our Real 
Estate Program. I will try to add more to this document once I have contacted a few more faculty. 
  
As prompted by Hod Lipson, I asked our faculty to think in a Bluesky way. 
I spoke to David Benjamin, Anthony Vanky, Jorge Otero Paillos and Leah Meisterlin. 
  
BLUESKY SUGGESTIONS: 
  

1. Can GSAPP work be used to fine tune Generative AI Models? GSAPP 
students spend many hours producing speculative design – building new worlds 
as well as new ideas for technology in building. The work is archived every year 
for an online website as well as for the end of year show. Would it be possible to 
fine tune DALL-E or Midjourney for example (taking into account that copyright 
issues are fixed first) to generate an ongoing GSAPP ‘language model’ with 
existing student work. How might students learn from this to move our field forward. 
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2. From an Urban Planning/Computational Design Perspective:  Students 
produce thesis and capstone projects. Could produce a searchable database of 
past research projects with common themes so that students don’t start from 
ground zero each year and build on knowledge that is created by our own 
community. 

3. Could an API be leveraged to create a specialized chatbot tailored to the field 
of historic preservation. This chatbot would serve the purpose of aiding with 
municipal regulations and/or specimen identification 

4. Can we host a GSAPP Datalake? This way, we could capture data that Faculty 
and Students have produced with sensors they have designed, or data that they 
have analyzed and collected so that work can be built upon each year. Some of 
this work is done by Research Data Services in the Library, and we have hosted 
some amazing datasets that are now looked after and curated by the 
Library(Historical New York City Project) but is there more we can do based on 
faculty and student work. 

5. What about Maker Spaces in Multiple Schools across the Morningside 
Campus? Many of us use the same equipment across schools. Is there a way to 
form a network out of these spaces and have support staff that relates to the whole 
network. That way some departments that receive less grants might benefit from 
others that receive more?? I’m responding here to Seth’s equity question. 

6. Virtual Reality. The same can be said for VR infrastructure. We have many uses 
for VR and always a shortage of VR equipment. 

7. Bootcamps. Can we host a series of interdisciplinary AI bootcamps – especially 
geared to the formation of customizing AI models for specific fields. 

8. Columbia Large Language Model. Is there a benefit in creating our own large 
language model to work outside of the commercial models? I know that more data 
means better models, but is there something to learn from a non-commercial 
model – a transparent, open source, foundational model -  that might have an 
impact as well as solve some of the bias problems endemic to the current models. 

9. Centralized GIS Data. Although Research Data Services goes a long way in 
solving this, I have been on numerous committees over my 20 years at Columbia 
asking for Centralized GIS resources. We still have multiple centers and institutes 
who would like to have access to similar data and no way to find it. 

10. Storage and user access to Lidar Models: HP Students and others at GSAPP 
do a lot of work with LiDAR scanning. So far, they have not been able to come up 
with a way to provide storage and access in the cloud in a way that could make 
their models more useful to other students, and more importantly to the general 
campus. 

  
BRIDGE REQUEST BETWEEN BLUESKY AND PRAGMATIC 
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Some faculty expressed a need that seemed easy to solve if they knew the right people to talk to. 
When our faculty start a project with Spatial Data, for example, they can go to Research Data 
Services in the Libraries to talk through their methodology and ask the research librarians 
(Jeremaiah Trinidad and Eric Glass are particularly helpful) to help them with methodology or with 
access to other data. But when they are working with large datasets, they often get stuck. A 
common question for these researchers is: should they work in a distributed cloud for data 
processing or purchase a large tower to store under their desk? The latter is the most common 
model at GSAPP and we all know that is not the right answer. Faculty want to know who to talk 
to for this kind of engineering advice to come up with the correct and least expensive version of 
what they might need to carry out a project. Again, Research Data Services is great for Faculty 
and the Empirical Reasoning Center at Barnard is a great resource for Barnard Students on 
software and methods. It would be great to start and ERC on the Morningside Campus on 
engineering/hardware questions related to their research. Is CUIT the place for these faculty to 
go? They are often too expensive for us, as is commercial cloud distributed computation. If not, 
we need a service like this. 
  
PRAGMATIC REQUESTS:  

From Historic Preservation – this might be too fine grain for this doc. Please delete if so – but I 
wanted to show you that most faculty request unique equipment for their own spaces rather than 
consider cloud computing. 

  
1. What do you need a computing infrastructure that you don’t have? 
The HP technology lab needs an in-lab storage solution for digital scanning data sets (estimated 
to be about 1TB every two semesters, at peak, in order to maintain student scanning work in 
perpetuity). Transferring large data sets to the cloud would take several days, whereas using a 
hardwired SSD would save time and increase productivity within a semester.  
Additionally, APC units are required to protect against power surges and ensure the computers 
remain operational, especially during critical data processing. Since photogrammetry projects can 
run for days or weeks, safeguarding against outages is crucial. 
  
Storage 
We have 4T storage and each computer has strong video cards. Depending on the size of the 
project, processing the data can happen between 1 hour to overnight.  
Regarding online cloud storage, I think that is necessary.  
  
Non-user specific / lab data storage 
We produce many 3D documentation scans of buildings that take up a lot of data storage. 
We need a general email/user to the lab, if we had such a thing, with a Google Drive that would 
be connected to a general email, then storage that could be continuous regardless of who is 
working a model at any time. So far there has been no resolution to that matter.    
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2. Does HP need high-performance computing? 
Acquiring an additional tower with the following specifications for the Preservation Technology 
Lab dedicated to VRl: 
  
- Minimum Requirements for Dedicated Graphics Card: Open GL 4.3, at least 8 GB memory, 
NVIDIA 1080GTX or equivalent. 
- For Stereo Rendering: NVIDIA Quadro. 
- Processing: 8 physical cores, such as Intel Core i7, Core i9, or Xeon processors.  
Additional Accessories :  
3D Connexion Space Mouse with the latest drivers for Laser Faro SCENE software. 
  
  
  
 
  



 

 

56 

Columbia Population Research Center 

Julien Teitler 

This document summarizes the survey responses of the Columbia Population Research Center 

(CPRC) affiliates. CPRC has 160 affiliates mostly in A&S, Public Health, and Social Work, but 

also in CIESIN, Nursing, Architecture, TC, Barnard, and the Medical Center (Pediatrics, 

Psychiatry, Neurology, Emergency Medicine). CPRC supports NIH research and has been funded 

by a P2C grant from the National Institute of Child Health and Human Development since 2006. 

It also receives supplemental resources from Columbia University. 

CPRC regularly surveys affiliates about their computing and methodology needs. This document 

summarizes themes that have emerged from both the UCC survey and ongoing surveys and 

meetings with CPRC affiliates. 

Computing and data access issues raised by CPRC faculty affiliates: 

#1 Data sharing within CU and with outside collaborators is very difficult 

This is due to a combination of factors: Incompatibility of platforms on the uptown and downtown 

campuses, the need for UNI authentication to access highly secure computing platforms (and 

difficulty obtaining UNIs for outside collaborators), the absence of easily accessible medium 

security platforms (e.g. that allow PII but not HIPAA data). 

#2 High performance computing (high cost of entry of HPC) 

For researchers outside units that buy into HPC, the cost of membership is very high. The costs 

of alternatives outside Columbia (e.g. AWS can also be high). 

#3 Highly constrained resources are inflexible (particularly uptown) 

Required to use Microsoft solutions when there are much better ones out there. This creates 

uptown-downtown collaboration hurdles (see #1). 

#4 Procuring data 
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There is no resource that assists researchers in obtaining, managing, and distributing data. Most 

recently, faculty have been asking for help in obtaining L2 voting data and Medicaid claims data. 

These data require upfront cost to purchase access and ongoing support for managing and 

distributing the data. 

Additionally, Columbia’s resources for reviewing and negotiating DUAs and purchase agreements 

with data vendors seem to be stretched thin and the process takes an unreasonable amount of 

time, especially in the context of grant or contract funded work.  We need additional staff training 

in DUA and purchasing processes for data products.  A lot of the standard forms Columbia 

provides to potential data vendors are oriented to Human Subjects Research, health data, PHI 

and PII, but a lot of the data faculty need to license do not have human subjects components. 

This leads to many rounds of discussion between vendors and Columbia to amend forms and text 

in the Columbia agreements.  

#5 No high-performance computing for sensitive data (the SDE is very limited) 

The HPC is good for analysis of non PII data and the SDE is good for less computationally 

intensive analyses of PII and PHI data, but there is no platform for computationally intensive 

analysis of PII and PHI data. 

#6 Slow speed of adopting collaborative research solutions that meet PII/PHI/HIPAA 

requirements. E.g. it took years to several years to decide on and roll out Box. 

Between the selection of platforms, establishing contracts with vendors, testing, modifying Rascal 

and IRB platforms to accommodate new platforms, and roll-out, it can take years for CU to come 

up with solutions to serious research analysis bottlenecks. 

#7 The cost structure of most computing platforms (e.g. HPC, SDE, Box) requires that individuals 

pay for access to secure computing or high-performance computing. This potentially locks out 

faculty who are doing unfunded research or are between grants. Accessibility could be greatly 

improved if a basic access tier would be provided free of cost to all faculty and students, with 

larger, grant funded projects, contributing for higher volume usage. 

  

Recommendations: 
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1.       Most of the research computing bottlenecks experienced by CPRC faculty are related to a 

lack of coordination across Columbia units, including between uptown and downtown IT 

departments; between the Provost’s office, HR, and CUIT; the procurement office, the IRB, and 

between CUIT (or RCS) and faculty researchers. Our recommendation is that decisions about 

new computing platforms, access to platforms, and cost structures of platforms are preceded with 

consultations across the units listed above and an impact assessment on faculty research. 

2.       The pricing structure for some of the platforms, particularly for storage and analysis of 

sensitive data (e.g. Box and SDE), creates disincentives to properly securing data. Columbia 

should provide centralized funding for anything related to data security to minimize risk to human 

subjects, or at least a free access tier. 

3.       Columbia should find a way to support high performance computing with sensitive data, for 

example, blending the attributes of SDE and HPC. 
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Lamont campus perspective on research computing survey 

Robert Pincus 

Survey responses  

This summary focuses on the 15-20 responses to the survey from the Lamont Campus and 

collaborators (e.g. researchers in DEES/A&S and APAM/SEAS who also maintain a presence at 

Lamont).  

Similar to other academic units, respondents note the need for expanded access to computing 

resources, calling out “reduced barriers to HPC and GPU use” and specifically “HPC (CPU and 

GPU nodes)” Several mention cloud computing as a means of making large data sets available 

for analysis. Researchers crave actively-maintained but customizable software environments on 

computing and analysis platforms.  

Barriers to internal and external collaboration came up frequently. With respect to internal 

collaborations, many of the respondents come from climate science in which it’s common to rely 

on large (petabyte) archives of data produced and archived remotely. Several respondents 

pointed out the need for technology and especially people to more effectively use such archives: 

“data[set] storage needs to be organized centrally so that we don't end up having multiple copies”, 

and “data[set] storage needs to be organized centrally so that we don't end up having multiple 

copies.”  

With respect to external collaborations, respondents expressed needs for easier access to 

Columbia computing resources, but more frequently expressed the ability to share large amounts 

of data with specific collaborators and more broadly. “We need a platform to host large climate 

data that is also capable of interactive visualization that helps convey the story behind the data to 

the public”  

Consistent with responses from other units, researchers expressed a desire and expectation to 

have an elevated level of baseline user-level services from the University including backup, file 

sharing, and technical training (the latter need expressed at all career stages). “We need a system 

[with] reliable IT support [for] local and remote environment, this cannot be the responsibility of 

each individual PIs.”  
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There was dissatisfaction with current funding models in which computing and support are drawn 

from grants: “For ongoing HPC support, to have a fixed charge that one puts on all grants would 

be much easier to accommodate than to have to come up with large chunks of money every 5 

years. It’s a barrier to keeping up a research program in this area.”  

Recommendations 

1. Expand access to high-performance computing including GPUs as much as possible 

through a combination of additional resources, different funding models, and different 

approaches to provisioning resources  

2. Provide diverse ways to store, distribute, and analyze petabyte-scale data stores. This 

should include e.g. the ability for external users to remotely-access data, perhaps with 

access restrictions, and flexible computing environments proximate to the data.   

3. Develop capabilities to more efficiently share large data sets, especially internally. This 

should include some combination of human coordination and automated tools to reduce 

data redundancy. 
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Arts & Sciences - Sciences response 
Róisín Commane and Timothy Berkelbach 

This response focuses on the response from the Science faculty (Astronomy, Biological Sciences, 

Chemistry, DEES, E3B, and Physics) to the survey sent in Summer 2023, discussions with faculty 

once they had returned to campus in Fall 2023, a meeting between the A&S committee members 

and A&S admin and an additional survey sent to postdoctoral researchers in Fall 2023.  

 

Summary: 

Overall, there was an acknowledgement of a need to move to more energy efficient computing 

options but many did not see how that was possible with the current infrastructure. Many Faculty 

and researchers require HPC or cloud computing (both CPU and GPU) and requested better 

guidance on access and payment, more flexible purchasing options (e.g., lower barrier to entry 

and/or more frequent purchasing periods), software that is readily accessible to researchers, 

increased IT support, improved documentation of available resources and easy-to-use research 

storage and backup. Continued access to computing resources for a short time after people leave 

was also mentioned. The practice of cutting off IT access the day a researcher leaves seems to 

be very unusual across academia and especially other peer institutions (e.g. Harvard has a grace 

period).  

 

Survey responses  

1. Three different types of accessibility were mentioned as essential for competitive research and 

for the successful uptake of HPC or cloud computing and transition away from departmental or 

group-specific computing resources:  

a. Funding accessibility. The need for a coordinated computing support model that is more 

integrated with the typical 3 year funding cycle of many in A&S.  

i. DEES:  For ongoing HPC support, to have a fixed charge that one puts on all 

grants would be much easier to accommodate than to have to come up with large 
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chunks of money every 5 years. It’s a barrier to keeping up a research program in 

this area. 

ii. Ecology: Columbia really needs to offer HPC computing for less money than 

having to buy nodes. I realize there are free allotments, but there should be more 

free options for students and postdocs, as well as faculty. We are way behind our 

peers and even non-peers. For example, most of my postdocs work on clusters at 

their PhD institutions because they are always better than what we offer. 

b. Easy access to remote servers. HPC servers with up-to-date software and interfaces such 

as jupyterhub, rather than being limited to SSH tunneling, would be a significant 

improvement over the current infrastructure, and likely encourage more non-specialists to 

use the facility.  

c. Continued access to complete projects. Other Universities (Harvard, etc) allow a grace 

period for graduate student researchers to finish computing projects after they have 

moved on to other positions. This has become a big issue for junior faculty who are 

encouraging their students to finish on time with papers not fully published. They soon 

discover that the student loses all computing access, with no grace period and finishing 

final paper review responses becomes really difficult. All access to CUIT facilities comes 

from UNI access and a change to the UNI grace period would make research much easier 

for faculty and students alike. *This is not a problem at Lamont where IT access does not 

rely on a UNI so projects are not impacted but it has made researchers reluctant to engage 

with CUIT facilities.  

2. Two different types of education were mentioned as essential to encourage uptake. 

a. Training for students and postdocs. Most other institutes have extensive online 

documentation provided for their clusters, which make it easy for a first-timer to use. In 

general there was concern about training and lack of easy to get students and postdocs 

from non-computing fields involved in using the clusters/cloud computing.  

b. Current users asked for faster response time from Research Computing Services on 

software installation requests and problems encountered. Suggestions such as a wiki of 

FAQs or a slack channel where people could ask others for help with technical issues 

within the Columbia HPC environment, rather than having to wait a week for RCS to 

respond to a ticket. This is severely impacting research science.  
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Other comments and suggestions 

Physics: At University of Michigan, the IT office shared between multiple departments set up and 

managed my Linux workstation and responded to software installation requests and technical 

issues within a day. In comparison, at Columbia, my department only has a single person who 

provides IT support, and thus is only able to respond to requests for assistance after multiple days 

have passed. In addition, University of Michigan provided access to 5 TB of storage on Dropbox 

and backup of my workstation on Crashplan without direct charge to the researcher. This helped 

me make sure my data was preserved and saved me the trouble of having to find data storage 

solutions.  

Astronomy: observational data streams expected to reach 10 petabytes per year for the Rubin 

Observatory and 100 petabytes per year for the Square Kilometer Array, so that even if a small 

fraction is brought local, enormous amounts of storage space will be needed for analysis. 
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Arts & Sciences Humanities and the School of the Arts 
Seth Cluett 
  

Summary: 
There is a significant need to ensure network and computing equity for fields and departments 

that lack the financial resources to stay current. There is a desire for expansion, clarification and 

onboarding for the free tier at CUIT to begin to approach the supported access to entry tier cloud 

computing provided by peer institutions that scales to paid plans with increased use. Cloud-based 

GPU access to support AV rendering for film, music, and visual art users and site-license access 

to JupyterHub or equivalent would be desirable to encourage adoption. Faculty requested 

transition training for software, AI end-user tools, and digital humanities, especially for absolute 

beginners but also for current graduate students to prepare for job market changes. Energy-use 

and a desire to ensure a sustainable, green solution is of utmost importance. 

  

Details: 
The response rate in the humanities and arts was notably low. Efforts continue in collaboration 

with administration to gather additional responses. Follow up conversations with colleagues, 

many felt the survey was not for them or weren’t sure how to speculate their future needs in the 

face of Large Language Model AI discussions in particular. Almost everyone who didn’t submit 

knew that they needed to think about this but expressed that the inevitable impact of recent and 

future technologies still felt too unknown. 

  

Due in large part to the nature of media rich content creation, the Arts and Music require lab or 

personal machines capable of end-user AI, ML, graphic rendering, haptics, VR/AR/xR work, 

video, and audio processing. In conversation, users cited the successful use of cloud-based 

render farms by peer institutions to support animation, video/film compositing, post-production, 

and format transfer. The School of the Arts IT group has been exploring this route independently 

from research computing on campus with some initial success. The Computer Music Center does 

work in deep & machine learning, AI for creative applications, data sonification and visualization, 

digital signal processing, music information retrieval (think Spotify-style recommendation 

algorithms), all of this work is currently done on desktop machines in end-user labs but as 

enrollments grow and research collaborations expand, these facilities will not sustain research. 
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Many complained of poor network connections. An informal survey of the wired internet speed in 

Dodge and Schermerhorn Halls averages 7 Mbps down and 3 Mbps up and wifi ranges from 

35Mbps to 120Mbps in rooms where a door interrupts line-of-site to a wifi node. Needless to say, 

these speeds are insufficient for all academics but are prohibitively slow for any of the kind of 

computing resources we are discussing. Since the response to this observation, CUIT has 

imitated a survey of internet speed and developed a plan for modernization. Many faculty cited 

the need for CUIT to scale the cost for the installation of ethernet or fast wifi with the bandwidth 

necessary for cloud storage and research computing. While this may seem small, with budgets in 

the $10k to $20k range, upgrading or installing internet in a facility can consume a year’s budget. 

  

For departments or researchers working in fields that lack major grant infrastructure (NIH, NSF, 

DARPA etc), the need for an effective centralized framework for keeping local or personal 

computing resources up to date was raised by a number of faculty. Some complained about the 

difficulty of taking advantage of FRAP funds to acquire computers with capabilities necessary for 

productive faculty research for which shared computing resources are inappropriate. FRAP is 

reasonable for consumer computing, however, you cannot add to FRAP or roll it over, so anyone 

requiring high CPU/GPU, memory, or storage needs have to find other methods to cover their 

personal research computing needs, often out of pocket. 

  

A number of faculty cited the need for the university to commit to the acquisition or creation of 

digitized research archives or data sets. Alongside this however, there was a zero-sum-game 

concern that monies dedicated to high-end computing resources will in turn shift funds away from 

standard technologies for scholarly activity (subscriptions to archives etc). Many faculty cited the 

general need for increased local and cloud storage capacity and systematized backup for 

scholarly work and data. 

  

Lastly, there was a universal desire for expanded training and support for the addition of data-

based scholarship and digital humanities for faculty. Moreover, there is an immediate need for 

resources to train current grad students in fields where the job market will demand computational 

fluency in some form. While outside the scope of this committee, a computational-humanities 

cluster-hire was mentioned more than once. 
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Social Sciences (mainly economics and political science) 

Wojciech Kopczuk, Economics A&S and SIPA 

I summarize and contextualize responses from social science departments within Arts & Sciences 

and SIPA — these responses are primarily from economics and political science faculty, with 

some connections to other fields. There were also closely related comments by social scientists 

elsewhere (business school, public health, social work) that this summary reflects. It also reflects 

some in-person and less systematic conversations.  

The first thing to note is that there are diverse needs that come up and that it reflects a variety of 

approaches and types of social science research. The typical social science model does not 

involve larger labs (although some of those exist and there’s been a bit of a trend in that direction), 

it is usually a collaboration between a small number of researchers who are often not in the same 

institution (and sometimes solo), it might but does not have to rely on research assistants that 

would usually be graduate students and sometimes undergrads. Computational needs span the 

whole spectrum from almost none (some of theory work) to statistical analysis of terabytes of data 

(textual, geocoded, administrative, health, financial, scanner data, etc.) and/or computational 

models that require HPCs. Responses reflect that and I’ll try to distill the most important themes 

1. Data. The lack of infrastructure for storing data, bringing in sensitive/human 

subjects/confidential data, sharing data of any type (including those with restrictions), and 

integrating all of it with sufficient computational resources is one of the common themes. 

One of the comments states “Columbia really needs a university-wide established and 

transparent procedure for procuring, maintaining and providing access to sensitive big 

data,” another one (from an economist in the School of Public Health, but reflecting 

broader needs I’m aware of) “I’ve had a lot of difficulty finding a place to store semi-

sensitive data, e.g. deidentified claims data that doesn’t meet the full HIPAA 

deidentification standard, like limited data sets. Ideally, there would be a secure computing 

cluster that was easy to access. I’ve used the secure data enclave, but it’s actually *too* 

secure for my purposes - I need to be able to move data on and off the enclave.” 

2. Computing power. A theme that’s been running through responses is the lack of cost-

effective access to modest (by science standards) HPC resources. The option of 

purchasing a node is viewed as expensive (for social science budgets) and inflexible 
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(more than needed, set up costs, a longer commitment). Some of it may be unawareness 

of the free tier, but also the free tier was viewed as inadequate when the only step us is 

inflexible and expensive. 

3. Technical support and information about what is out there. The common complaint is 

lack of convenient access to expertise of many different types — help/information about 

cloud computing; getting started with parallelizing and GPUs; about data storage; sharing 

and security options; about specific computational problems (one of the responses was 

about struggling to analyze large amounts of data using Stata - potentially the wrong tool 

here, but also, possibly, reflecting the lack of access to expertise about how they could 

take advantage of HPC) 

4. Sharing resources. Infrastructure for sharing data with collaborators and students is one 

theme here; university-level data and software licenses is another (that includes things 

like Overleaf, Dropbox, ChatGPT, but also statistical software licenses). Some of it is really 

a call for a well-organized and centrally managed clearinghouse of resources that are 

already at the university 

 

  



 

 

68 

Zuckerman Institute 

Darcy Peterka 

The Zuckerman Institute was created to understand the complexities of the brain and mind, and 

is very broad and interdisciplinary by design.  We currently have 54 Principle Investigators 

spanning 19 departments, including faculty from A&S, SEAS, and CUIMC.  We are also home to 

the Center of Theoretical Neuroscience, and are a key partner with the newly founded SNF Center 

for Precision Psychiatry.  Further, our labs range from purely experimental labs, to purely 

theoretical labs, and every mix in between, including labs that develop technical methods and 

others that create, refine, and develop algorithms and pipelines.  

The Institute is housed in the Jerome L. Greene Science Center, a relatively new (open < 10 

years) building, which appears to give us considerably better baseline network infrastructure, both 

wired and wireless, than other areas on campus.  We also have an on-prem modern data center 

with a mix of high and medium energy density racks, and currently have ~4 PB of high 

performance (Isilon) storage coupled to a modest CPU and GPU clusters.  The CPU cluster is 

fully configured for virtualization, and resources can be “rented” at reduced (subsidized) cost. 

Further, we have a dedicated IT/compute team that interfaces with faculty and staff and works 

closely with CUIT. 

A large fraction of our investigators use at least one of these Institute centralized resources, but 

to varying degrees and some do not use any.   Nearly every lab still has some local storage, with 

~20% having their own medium-to-large NAS devices (10s of TB to ~1PB), and many others still 

relying on ad hoc local storage on desktop computers, or stacks of consumer hard drives.  

Similarly with compute – nearly every lab has at least one, some many, dedicated high-memory, 

high core workstations for processing and analysis. Commodity cloud services are also used for 

data sharing, such as Dropbox, or Google Drive, in addition to more formal tools such as Globus.  

As an Institute, and some individual faculty, have frequently participated in buy-in rounds for 

Columba HPC (SRCPAC). 

The formal survey response rate was low, though many who did not respond to the survey shared 

thoughts in person, during subsequent canvassing.  Many of these comments echoed points 
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touched upon in some survey responses, but added additional color, and sometimes-new topics 

entirely. 

-        People underestimate the costs of storage and compute infrastructure, and thus fail to budget 

actual expected costs in proposals.  Data lifecycle management is a serious issue.  While there 

is a strong push within the neuroscience community for well-formatted and annotated data, there 

are real and perceived barriers to execute. 

-        Data that is not discoverable is “cheap data”.  While it may have been expensive to acquire, 

this data has limited value, especially to the broader community, but is still expensive to store. 

-        Modern methods can generate 100s of GB to 100s of TB per day, per instrument, and many 

labs have multiple instruments. Rapidly storing, pre-processing, analyzing, exploring and 

interacting with this data is a problem, and limits better experiments (e.g. closed-loop 

experiments) 

-        Collaboration with large data-sets is hard.  Network is too slow, and compute methods are 

often tied to a particular hardware instantiation. 

-     Real need for software engineers, to move algorithms from proof-of-principle to active 

deployment – not a priority/motivation for the researchers, even though there is clear 

understanding this has large value, for reproducibility, adoption, and overall impact. 

-        Difficulty of hiring, or recruiting researchers.  Incoming people have increased expectations 

for resources. 

-        Big need for expertise in bioinformatics/big data/interpretation.  

-        Much of the data is currently resistant to hands-off analysis.  Still many manual steps, and 

parameter tuning, and requires visual inspection. Makes clould work difficult. 

-        Lack of tools for exploration of very large imaging data. 

-        Limited access to data center space for individually owned hardware. 

-        Slow network for large data moves.  
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-        Cloud seems ok for some things, but because specialized expertise is required, people 

become much more dependent on others for tool development, for ingest, processing, and 

interaction.  

-        Data rates are increasing very heavily - we need real-time processing, and potentially 

industry partnerships for managing streams from proprietary instruments. 

-        Better collaboration – sharing resources and compute.  

-        Better ways to understand use, and “touching” of data.  

-        Better responsiveness from local IT/RC staff.  Some complaints about apparent 

expertise/engagement levels, or ability to solve lab specific compute issues quickly. 

-      Lack of modern GPU-hardware – complaints of outgoing, or current trainees that they are 

not getting trained on ML/AI at the speed that is necessary to stay “current” 

  

Survey themes: 

Cheap and easy (but good!) storage.  Multi-TB to PB scale (raw) datasets are becoming much 

more common.  We need a cost effective way to store these data sets, including backup, while 

keeping them very accessible to compute infrastructure. 

Data and compute (local) need easy remote access, and high-speed transfers. 

Access to GPU clusters with high availability (fast to spin up).  Queues too long for big jobs on 

Ginsberg (CU HPC) Better containerization – want access to create an environment beyond 

home directory installs.  Quality was considered generally good, but it is too little, and too rigid. 

Higher level of baseline institutional resources for compute (GPU/CPU) and storage at no or low 

cost. 

Access to expert staff across the range of possible functions – people to facilitate running large 

jobs, set-up/etc.  Staff that can help advise on which resource to use, from local workstations, to 
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local HPC to Cloud providers. People that can guide and support local workstation/compute 

(individually owned) 

Better structures for sharing data between campuses (esp. uptown) and collaborators, including 

protected/HIPAA data 

Better access to high performance clusters with managed environments, where all 

management, and optimizations are essentially abstracted away from the end users. 

Needs to be cheap, and not go away during times of resource scarcity. Under desk = pay once, 

use forever. 

Concern on who should administer/archive data long term.  Most do not want to be responsible 

for that, and do not have the background or resources to plan effectively. 
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Research Computing Needs at Columbia Business School 

Ciamac Moallemi 

Background 

Columbia Business School (CBS) operates its own research cluster and storage infrastructure 

independent of CUIT and has dedicated research computing administrators. In general, users are 

very happy with the setup. A key aspect of this is the fact our administrators provide very high 

touch support. Our users are not always sophisticated and dedicated/personalized support has 

been extremely important. Part of this is the ability to provide customized hardware and software 

environments. In the past we have had issues with university offerings for research computing 

such as SRCPAC, because they are restrictive and inflexible especially in their software 

administration. The central ingredient in the success of research computing at Columbia 
Business School has been the fact that those responsible for its design and administration 
are directly accountable to faculty. This is done by having the research computing function 

report to the Senior Vice Dean for Research and the Faculty Computing Committee at the 

Business School. We strongly believe that future research computing efforts will only be 

successful if research computing administrators report to and are accountable to the school and 

faculty as opposed to CUIT. 

Future Needs 

I am summarizing future needs based on 9 responses received to the survey, interviews with 

users, as well as my own experience chairing the CBS Faculty Computing Committee for the past 

5+ years: 

● GPUs. One area of current shortfall is access to GPUs. Users would like to fine-tune and 

perform inference on state-of-the-art large language models as well as other generative 

AI models. This hardware to do so is very expensive (e.g., 8xNVIDIA H100-80GB server 

is $300K+) also in short supply thus very hard to purchase. Researchers have been 
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constrained to using smaller models due to lack of access to high memory GPUs 

(especially currently access to NVIDIA A100/H100 GPUs is extremely challenging). 

● HIPPA. Some of our researchers work with personal health information and need HIPPA 

compliant servers. CUIT offers a “Secure Data Enclave”, but this is so limited (max 25GB 

of collaborative workspace, only 1-2 users can access data at the same time, etc.) that is 

not useful. Our researchers have had success leveraging HIPPA compliant servers 

administered by CUIMC, but this requires collaboration with and sponsorship by CUIMC 

researchers. It would be great to have a modern university wide HIPPA compliant offering 

available outside of CUIMC. 

● Research engineering support. As research computing gets more sophisticated, users 

need an increasing amount of engineering support. For now, our dedicated support model 

has worked well, but we may be beyond our abilities along more challenging technical 

dimensions, for example for deep learning models trained on GPUs. 

● Cloud computing. We have very little expertise in cloud computing. This will become 

increasingly important, especially as it is an important avenue to obtain access to more 

exotic hardware like high memory GPUs. It would be helpful to leverage university-wide 

cloud computing efforts. 

● Physical facilities. We rely on the university for rack space, power, and networking for 

our cluster, and hope to continue to do so. 

● Hardware. We have continuing needs for CPUs and storage. In general, we have 

developed our own solutions independent of the university and these have worked well. It 

would be great to leverage university offerings, but the restrictive SRCPAC model does 

not work for us. If the university could offer bare metal access to hardware, or offer VM-

level access (like cloud providers such as AWS or GCP), that might be something we 

could potentially use. 
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Faculty Input on Computing Needs - Law School 

Frantz Merine 

Feedback was gathered through discussions with research-active faculty 

members. The following insights are from discussions with faculty who 

recently made technology purchases through the IT Helpdesk using their 

research budgets/accounts. 

 

● Autonomy - The ability to have full administrative control over the computing environment 

● Division of Labor - Clear roles and responsibilities over the tech-stack 

● Remote Access and Virtualization - Enabling access to resources fromanywhere 

● Support and Training - Providing assistance and education in using computing resources 

effectively. 

● High-Performance Computing (HPC) - Harnessing powerful computational capabilities for 

complex tasks. 

●  Dedicated Software and Hardware Resources - Access to specialized tools and 

equipment tailored to research needs. 

● Data Storage and Management - Efficient organization and retention of research data. 

● Data Analytics and Machine Learning - Use computational power for advanced data 

analysis and model training. 

● Visualization and Graphics - Rendering and interpreting complex data through graphical 

representation. 

●  Security and Compliance - Ensuring data protection and adherence to regulatory 

standards 
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Faculty Input on Computing Needs - School of Professional Studies 

(SPS): 

Siddhartha Dalal 

Feedback was gathered through discussion with faculty and through the survey.  

1. The survey responses were few since the survey was conducted during the summer. 

2. Diversity of Needs: The faculty in SPS is very diverse with 18 departments including 
negotiations, Bioethics, Applied Analytics, Information & Knowledge Strategy, Insurance 
management, Enterprise Risk Management, etc. They all have very different needs including 
those who are satisfied with their laptops to those who require GPUs. The following observations 
are based on a discussion with several faculty members who are working on relevant topics 
requiring serious computing. 

a. Minimal Cloud Account: There is a great interest in using GPU and Cloud for research and 
teaching. However, accessibility and usability were two serious problems. Given the prevalence 
of cloud, the faculty felt that there was a need for all faculty to be provided with a minimal cloud 
account.This will encourage more faculty to become conversant with it and experiment with other 
associated technologies. 

b. Research Engineers to Support Local Needs: Given the diversity of faculty in SPS, it was 
critical to have a research engineer affiliated with CUIT to help SPS faculty in configuring 
components to create a custom workable system for each faculty/class need. 

c. Shareable Data Repositories and Storage: There is a need for data repositories which can 
be shared across the university which will encourage collaboration across departments and 
schools. Currently it has been hard to move data around different schools, or keep track of other 
relevant research. 

d. Access and Licensing of External Data: At times, where there is a need for accessing data 
from external resources. There is a lack of information about whether Columbia has already an 
access, or if not, then having help in negotiating data access. After all the data is the fuel which 
powers all the intellectual activities across the campus. 

e. Configuration Management System: There is a need for some sort of easily usable 
configuration management system to integrate components and libraries. For example, though 
there is Singularity virtual environment in HPC clusters, it is rather complex  to get any new 
components added since the users do not have SU privileges and getting any new component 
requires hand-holding by CUIT. 

f. Chatbot for Columbia Use: For commonly available information, it would be worthwhile for 
CUIT to develop a chat-gpt kind of interface for novice users. 

G. Support for New Emerging Technologies: Currently we do not have much support for the 
computers which are other than MAC and Windows outside of the College of Engineering. We 
need to develop this for other OSs, e.g., Ubuntu machines, which are commonly used in Machine 
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Learning. As the new technologies and computing environments become available,  it would be 
important for CUIT to develop expertise and support faculty in the use and trouble-shooting of 
components using these new technologies. 
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CUIMC Faculty Response on Research Computing 

In 2022, the Columbia University Irving Medical Center (CUIMC) created a short-term task force 

on Research Information Technology and Computing (RITC) to advise on the status and future of 

RITC services at CUIMC, completing its report in February 2023. Based on that report and on the 

2023 university Research Computing Faculty Committee survey, we present these findings. 

CUIMC Main Findings 

Across all CUIMC schools, research progress is often impeded by inadequate information 
technology (IT) infrastructure and research services requiring workarounds and external 

subcontracts resulting in lost scientific opportunities and revenue. 

 Financial, networking, security, access, and reliability challenges exist for researchers using the 

available on-premises (“on-prem”) and cloud computing services. These challenges are 

compounded by our aging IT infrastructure and lack of adequate coordination between 

operational units (e.g., CUIMC IT, Facilities, and the Center for Computational Biology and 

Bioinformatics (C2B2) in the Department of Systems Biology). 

To be a leader in biomedical research and research computing, CUIMC must develop and 
implement a research strategic vision and partner with the rest of Columbia University as well 

as NewYork-Presbyterian Hospital, and participate in regional and national consortia to seize 

opportunities and address threats. 

The task force evaluation suggests that for the foreseeable future, from both a financial and an 

operational perspective, CUIMC research information technology and computing needs will be 

best served by a hybrid model. This model should offer a transparent, navigable, coordinated 

mix of on-prem and cloud resources for high-performance computing (HPC), data storage and 

management, and central, fundamental IT services that support local innovation.  This model 

should undergo a regular review. 

We emphasize the importance of data privacy at CUIMC given the volume of protected health 

information (HIPAA), which must be taken into account for any shared infrastructure. Sharing data 

generally requires several appropriate levels of permission and protections. 
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CUIMC Vision 

CUIMC needs a single service-oriented “front door” for central support of research HPC and IT. 

This will facilitate equitable and streamlined access to HPC, data storage, data management, and 

support services throughout the research lifecycle. CUIMC IT must be guided by faculty 

leadership and faculty needs assessments to prioritize RITC central services while partnering with 

expertise in the schools and department to maximize efficiencies, enable research innovations 

and drive new funding. CUIMC faculty leadership will evaluate needs to make strategic decisions 

about future investments and partnerships with CU and NYP, as well as industry and other 

academic partners, to support the research vision and mission. 

CUIMC Recommendations 

1. We need leadership and governance reorganization around RITC support services at 
CUIMC. We propose (a) a new CUIMC role, Chief Research Information Officer to oversee 

strategic planning and direction of resources devoted to RITC across the four schools at CUIMC; 

(b) a CUIMC Faculty Advisory Committee on RITC; (c) hire a CUIMC Director of RITC, reporting 

to the CUIMC CIO, to operationalize and implement the vision developed by CRIO and Advisory 

Committee; and (d) encourage school-level RITC leadership. 

2. We must engage in short and long-term strategic planning for HPC and data storage and 
management (on-prem and cloud). This must be done in collaboration with the rest of the 

university. 

3. We must coordinate and invest in existing CUIMC, school, and departmental IT 
resources to support the research mission. We must gather data from all user groups, upgrade 

the network, establish a phased plan to support a hybrid HPC environment, and increase RITC 

services. Collaboration with the university will likely result in economies of scale and stability. 

4. We must create a financial model and invest in infrastructure to support integrated RITC 
operations. 

CUIMC Additional Materials 

CUIMC Landscape Analysis 
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Research at the medical center and the university involves exponentially larger and more complex 

data necessitating access to reliable high-capacity computing power and data storage 
systems. 

CUIMC does not have faculty-level leadership and governance nor a singular strategic plan 

for RITC. There are no guiding principles or needs evaluations in prioritizing investments and 

infrastructure. 

Networking conditions within and between campuses and externally are a significant barrier to 

scientific progress. 

CUIMC HPC resources have out-of-date infrastructure and inadequate central support from 

Facilities and IT and are viewed as unreliable by some researchers and groups. The medical 

center is not well-positioned to support the expanding HPC environment (HPCE) for the research 

community. Prioritization, coordination and efficiency, and financial investment are all required. 

Central support from IT and Facilities teams will be essential for a data center’s reliability, 

sustainability, security, and integrity. 

“On-prem” HPC (through C2B2) and “off-prem” cloud services (through CUIMC IT & Departmental 

CITGs) are provided. However, messaging about options, services, and pricing lacks 
coordination and can conflict. 

Cloud computing presents new challenges (and opportunities) for academic medical 

centers, including: (1) an inability to estimate and monitor costs accurately; (2) complex and 

evolving cloud pricing models; (3) rapidly evolving sets of cloud computing software services; and 

(4) training and support for cloud computing usage. 

To plan and budget appropriately, grant-funded investigators need more resources and services 

to estimate costs for the use of cloud services vs. on-prem HPC and data storage. Upfront 
guidance and transparent fee structures to compare all options are necessary. 

Many critical research services and trainings (through CUIMC IT, CUIT and at 

schools/departments) are poorly accessible, unknown or simply lacking. RITC support is 

uneven, with some departments investing in support (CITGs) and others relying on central support 

that needs to be more adequately staffed or deployed. 
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A review of several leading academic medical centers (e.g., Vanderbilt, Stanford and others) 

underscore the importance of a robust academic and research-focused governance 
structure involving faculty for strategic planning, needs assessment, prioritization, transparency, 

and communication. This requires collaboration with the university and health system to leverage 

investments and vendor partnerships to maximize service and impact. 

CUIMC Responses to the 2023 Research Computing Faculty Committee Survey 

This is a summary of the CUIMC responses to the Columbia research computing survey. There 

were 96 CUIMC responses as of 9/8/2023 with two duplicates. It is not intended to replace the 

original comments, which are worthy of individual review. The purpose here is to put those 

comments within the whole context. That something was mentioned frequently probably means 

that it is important, but that something was mentioned only once does not mean that it is 

unimportant. Some responses were clearly frequent because they were mentioned in the survey 

prompt. A comment about a single area like data storage could really be about infrastructure, 

funding, training, privacy, or other, and the attempt here was to separate them into the underlying 

intents to the extent possible. 

Comment Number 

Infrastructure 133 
   Storage 32 
         Huge databases (terabytes) 6 
         Supporting inter-institutional work 4 
   High-performance computing 25 
         GPU 11 
   Backup 14 
   Designed for compliance 13 
         HIPAA 9 
         FERPA 1 
         Semi-secure data 1 
   Tools (overlaps services) 10 
         RedCap 5 
         Other (R, SPSS, Digital signing, Shiny apps) 4 
   High-speed network (mostly for data transfer) 7 
   Access to health record data (mostly Epic) 7 
   Shared datasets (mostly internal for this row) 7 
   Remote access for research 5 
   WIFI 4 
   General refence to cloud solutions 3 
   Classroom IT 2 
   Provision of external data sets 2 
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Services 36 
   IT support in various forms 16 
         Examples (HPC, Linux, R, GPU, software update) 5 
   Collaborative research computing 7 
         Examples (Ronin, Colab, code repository) 3 
   Statistical services 5 
   Bioinformatics services 2 
   Other (language processing, machine learning, anonymization, ...) 6 
    
Funding (thrust was mostly how to pay) 14 
   Free or cheap computing cluster 5 
   Software licenses 3 
    
Training 9 
   Examples (coding, language processing, AI, statistics) 4 
    
Policy 3 
   Allow tools beyond Microsoft 1 
   No more phishing emails 1 
   Less strict control of workstations and servers 1 

 

Data storage, high-performance computing, and backups were predominant. There were 

requests both for local and cloud versions of data storage and computing, depending on the 

context. GPUs came up repeatedly. Access to health record data was frequently requested, along 

with a request for access to the Epic system itself (e.g., to provide decision support). Compliance 

with privacy regulations like HIPAA also came up frequently. Inter-institutional work came up in 

several contexts including data sharing and external collaborative research. 

Many comments were requests for tools and services. The most common was for IT support in 

various forms, but there were requests for research-specific tools like RedCap and collaboration 

software and services like bioinformatics and statistics. 

Several generic IT requests surfaced, such as getting the WIFI to work, remote access from home 

for research, and classroom provisioning. Training came up as did a few policy issues. A number 

of comments were really requesting funding rather than a specific change in infrastructure or 

services.  
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CUIT Point of View 

The committee endeavors to recommend a set of centralized research computing resources that 

are broadly useful enough to provide the means for every researcher to be competitive technically 

and financially on every grant.  There are two major issues that must be tackled in order to create 

something useful enough to draw researchers towards the resources (as opposed to mandating 

they use them): 

1. The resources must be relevant to the needs of a variety of researchers and not become 

antiquated in a short amount of time 

2. The resources must be significantly more cost effective than “going it alone” 

When it comes to relevant resources, one must consider the variety of research, the diversity of 

researchers, and constant evolution of available technology.  Those factors demonstrate 

definitively that making any single resource (or type of resource) available will not suffice to meet 

the committee’s charge.  This implies that there must be a portfolio of technologies provided, or 

even more to the point, a variety of services available for researchers to choose from.  Services 

can range from datacenter floor space to managed GPU clusters to cybersecurity responses on 

grant proposals – the only common thread being that they are useful enough to the research 

community to warrant their cost and upkeep. 

To define and maintain a relevant portfolio, there must be faculty governance.  Not unlike 

SRCPAC, but perhaps with a wider charge, a faculty governance committee to continuously 

monitor the portfolio, adding services and convalescing them as needed will be essential to the 

success of anything that is built and maintained centrally.  Importantly, the governance must be 

representative of the diversity of schools and researchers; anything built centrally should not be 

just for the few technically skilled researchers, rather these resources should be useful across the 

spectrum of researchers regardless of their technology acumen.  Certainly there are obvious 

resources that are identifiable enough at the outset, such as datacenter space, HPC/GPU cluster 

access, access to AI tools (such as LLM’s and machine learning platforms), cloud environments, 

etc. – but all of those items that we can list need additional detail to turn them into an actual 

service offerings, and faculty input is required to do just that.  The Executive Vice President for 

Research office should play a role in this governance, ensuring that faculty participation is 

consistent and representative. 
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Defining a portfolio and providing the rules around it will only be valuable if there are people to 

carry out those directions from the governance committee.  This means that beyond the portfolio 

software, hardware, space requirements and other physical elements there will need to be an 

appropriately skilled central team to maintain the entire portfolio.  A professionally managed team 

that provides the structure to maintain the necessary talent that supports the research resources 

will be essential to keeping the entire portfolio of offerings relevant.  Beyond just having the 

resources available, it will manage on-boarding, career-pathing, leave management, performance 

reviews, training/skilling up and the other myriad of management activities required to keep a 

team performing well and serving the researchers.  The central team would also be charged with 

communication and awareness campaigns, to make sure researchers know what is available and 

how to access it.  Communication materials would not be limited to simply “advertising” internally 

to the university, but there could be elements of communications materials that can help 

researchers when they are developing proposals.  Finally, An essential feature of the centralized 

team would be to continue and develop the embedded model in place today (or “data/research 

navigator” model at CUIMC).  This model provides schools and departments with dedicated skilled 

resources to assist with bringing technology to their research and maintaining it throughout the 

grant lifecycle. 

Having a portfolio defined and a supporting group of human resources will only be useful if it’s 

financially attractive to the researchers, and that will only be true if there is enough central funding 

to subsidize these resources to a point whereby the financial differences are impossible to ignore 

or argue with.  That is why it is important that we get buy-in from school deans and central 

leadership to provide on-going financial support so that we can “lift all boats” at Columbia.  It is 

therefore recommended that the committee act as the first iteration of the faculty governance 

committee and settle on a list of initial services.  CUIT emerging technology team and RCS will 

then act in the place of the future state support model and provide the necessary costs, both 

capital and operating, to present to university leadership.  Assuming approval, we would then 

move forward with building the centralized team under CUIT and bootstrapping the initial services.   

None of these services would be compulsory, rather the opposite – it should be that researchers 

seek to use these services.  This effort is not meant to supplant resources that researchers 

already have and find sufficient or superior to any centralized resource.  However, we believe that 

the most cost-effective way to get the vast majority of researchers access to the technology they 

need while staying competitive on their grant proposals will be to build the portfolio and supporting 
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structures centrally.  We seek to provide more access to more people, thereby making it worth 

the investment to the deans and university leadership. 
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